

Wireless 1-Gang Water pH / ORP / Temperature Sensor

with 1 x Digital Output

R900PD05AO1 User Manual

Copyright©Netvox Technology Co., Ltd.

This document contains proprietary technical information which is the property of NETVOX Technology. It shall be maintained in strict confidence and shall not be disclosed to other parties, in whole or in part, without written permission of NETVOX Technology. The specifications are subject to change without prior notice.

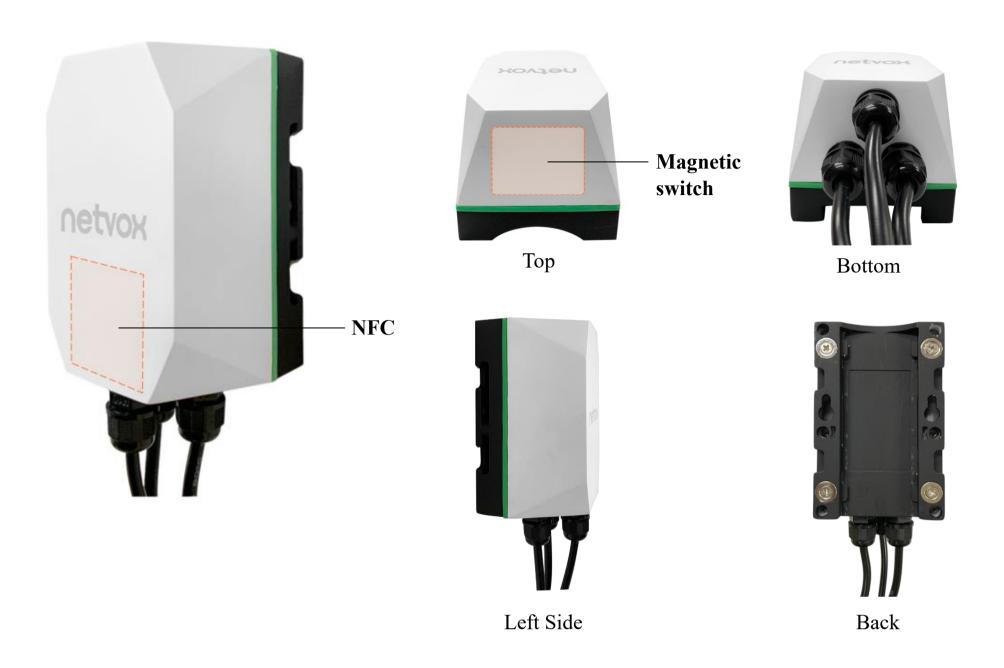
Contents

1. Introduction	1
2. Appearance	2
3. Features	4
4. Setup Instructions	5
5. Data Report	7
5.1 Example of ReportDataCmd	7
5.2 Example of Configure Cmd	g
5.3 Example of Set Sensor Alarm Threshold Cmd	13
5.4 Example of Global Calibrate Cmd.	14
5.5 Example of Netvox LoRaWAN Rejoin	16
6. Read R900 Data on NFC App.	18
7. Installation	23
8 Important Maintenance Instructions	31

1. Introduction

R900PD05AO1 is a wireless water pH and ORP sensor with a digital output. It transmits digital signals to a third-party device when a value exceeds the threshold. With up to 7 flexible installation options, R900PD05AO1 integrates easily into various environments. In addition, with support for Netvox NFC app, users can easily configure settings, update firmware, and access data simply by tapping their smartphone to the device.

LoRa Wireless Technology


LoRa is a wireless communication technology famous for its long-distance transmission and low power consumption. Compared with other communication methods, LoRa spread spectrum modulation technique greatly extends the communication distance. It can be widely used in any case that requires long-distance and low-data wireless communications. For example, automatic meter reading, building automation equipment, wireless security systems, and industrial monitoring. It has features like small size, low power consumption, long transmission distance, strong anti-interference ability, and so on.

LoRaWAN

LoRaWAN uses LoRa technology to define end-to-end standard specifications to ensure interoperability between devices and gateways from different manufacturers.

2. Appearance

3. Features

- Main unit: IP65
- Detect water pH, ORP, and temperature
- Built-in vibration sensor for tamper alarm
- Output digital signals when a value exceeds the threshold
- Up to 7 installation methods for different kinds of scenarios
- Support NFC. Configure and upgrade firmware on Netvox NFC app
- Store up to 10000 data
- LoRaWANTM Class C compatible
- Frequency hopping spread spectrum
- Configuration parameters can be configured through third-party software platforms, data can be read, and alarms can be set via SMS text and email (optional)
- Applicable to the third-party platforms: Actility / ThingPark, TTN, MyDevices / Cayenne

4. Setup Instructions

On / Off

Turn on	Plug in the DC12V power adapter. The green indicator flashes one time.
Turn off	Unplug the power adapter.

Function key

Reboot	Step 1. Press and hold the function key for 5 seconds. The green indicator flashes once.		
	Step 2. Release the function key and short press it in 5 seconds.		
	Step 3. The green indicator flashes 5 times.		
	Step 1. Press and hold the function key for 10 seconds. The green indicator flashes once		
	every 5 seconds.		
Factory reset	Step 2. Release the function key and short press it in 5 seconds.		
	Step 3. The green indicator flashes 20 times. R900 is factory reset and off.		

Magnetic switch

Reboot	Step 1. Hold a magnet close to R900 for 5 seconds. The green indicator flashes once. Step 2. Remove the magnet and get close to R900 in 5 seconds. Step 3. The green indicator flashes 5 times.		
Factory reset	 Step 1. Hold a magnet close to R900 for 10 seconds. The green indicator flashes once every 5 seconds. Step 2. Remove the magnet and get close to R900 in 5 seconds. Step 3. The green indicator flashes 20 times. R900 is factory reset and reboot. 		

Note: 5 seconds after powering on, the device will be in engineering test mode.

Join a Network

	Turn on the device to search the network.
First time joining the network	The green indicator stays on: Success
	The green indicator remains off: Fail
Had joined the network before	Turn on the device to search the network.
(Device is not factory reset.)	The green indicator stays on: Success
	The green indicator remains off: Fail
	Please check the device verification information on the gateway or consult your platform
Fail to join the network	server provider.

Function key

	Device is in the network
	The green indicator flashes once. After sampling is completed, the device reports a data
Short press	packet.
	Device is not in the network
	The green indicator remains off.

Magnetic switch

	Device is in the network
	The green indicator flashes once. After sampling is completed, the device reports a data
Move magnet close to the switch	packet.
and remove it	
	Device is not in the network
	The green indicator remains off.

5. Data Report

35 seconds after the device is powered on, it will send a version packet and data including water pH, water quality ORP, and water temperature.

Default setting:

Min Interval = 0x0384 (900s) // should not be less than 30 seconds

Max Interval = 0x0384 (900s)

pH = 0x0064 (1 pH)

Water quality ORP, = 0x0064 (100mv)

Temperature = 0x01F4 (5°C)

Note: a. If no configuration is done, the device sends data based on the default settings.

b. Please refer to Netvox LoRaWAN Application Command document and Netvox Lora Command Resolver http://www.netvox.com.cn:8888/cmddoc to resolve uplink data.

Data report configuration and sending period are as follows:

Min Interval	Max Interval		Current Change ≥	Current Change <
(unit: second)	(unit: second)	Reportable Change	Reportable Change	Reportable Change
Any number between	Any number between		Report	Report
30 to 65535	Min time to 65535	Cannot be 0	per Min Interval	per Max Interval

5.1 Example of Report Data Cmd

FPort: 0x16

Bytes	Bytes 1 2		1	Var (length based on the payload)
	Version	Device Type	Report Type	Netvox PayLoad Data

Version -1 bytes -0x03—the Version of Netvox LoRaWAN Application Command Version

Device Type – 2 bytes – Device Type of Device

The device type is listed in Netvox LoRaWAN Application Device type V3.0.doc

Report Type – 1 byte – the presentation of the Netvox PayLoad Data, according to the device type

Netvox PayLoad Data – Var bytes (length based on the payload)

Tips

1. Battery Voltage

If the battery is equal to 0x00, it means that the device is powered by a DC power supply.

2. Version Packet

When Report Type = 0x00 is the version packet, such as $030126\underline{00}0A02\underline{20250724}$, the firmware version is 2025.07.24.

3. Data Packet

When Report Type=0x01 is the data packet.

4. Signed Value

When the temperature is negative, 2's complement should be calculated.

Device	Device Type	Report Type		Netvox PayLoad Data						
R900P D05A O1	0x0126	0x01	PH (2 Bytes) 0.01pH	Temperature with PH (Signed 2 Bytes) unit: 0.01°C	ORP (2 Bytes) unit: 1mv	0 Bit: Low PH Alarm 1 Bit: High PH Alarm 2 Bit: Low Temp With PH Alarm 3 Bit: High Temp With PH Alarm 4 Bit: Low ORP Alarm 5 Bit: High ORP Alarm 6~7 Bit: Reserved 0_false 1_true	Shock Tamper Alarm (1 Byte) 0x00_No Alarm 0x01_Alarm			

Example of Uplink: 0301260103370A82009B02(00000010)01

```
1<sup>st</sup> Byte (03): Version
```

2nd 3rd Byte (0126): Device Type — R900PD05AO1

4th (01): Report Type

 $5^{th} - 6^{th}$ Byte (0337): pH - 8.23 0337 (Hex) = 823 (Dec), 823* 0.01 = 8.23 pH

 $7^{\text{th}} - 8^{\text{th}}$ Byte (0A82): Temperature with PH $- 26.90^{\circ}$ C 0A82 (Hex) = 2690 (Dec), 2690^{*} 0.01* °C = 26.90° C

 $9^{th} - 10^{th}$ Byte (009B): ORP – 155mv 009B (Hex) = 155 (Dec), 155* 1mv = 155mv

 11^{th} – 0Bit (0): Low PH Alarm – 0 (HEX)= 2 (DEC), 2&01= 2

 11^{th} – 1Bit (1): High PH Alarm – 1 (HEX)= 2 (DEC), 2&02= 2

11th – 2Bit (0): Low Temp With PH Alarm – 0 (HEX)= 2 (DEC), 2&04= 2

11th – 3Bit (0): High Temp With PH Alarm – 0 (HEX)= 2 (DEC), 2&08= 2

 11^{th} – 4Bit (0): Low ORP Alarm – 0 (HEX)= 2 (DEC), 2&10= 2

 11^{th} – 5Bit (0): High ORP Alarm – 0 (HEX)= 2 (DEC), 2&20= 2

11th – 6~7Bit (-): Reserved

12th Byte (01): Shock Tamper Alarm

5.2 Example of Configure Cmd

FPort: 0x17

Bytes	1	2	Var (length based on the payload)		
	Cmd ID	Device Type	Netvox PayLoad Data		

Cmd ID – 1 byte

Device Type – 2 bytes – Device Type of Device

The device type is listed in Netvox LoRaWAN Application Device type 3.0.doc

Netvox Pay Load Data – Var bytes (length based on the payload)

Description	Device	Cmd ID	Device Type		Netvox PayLoad Data				
Config Report Req		0x01		Min Time (2 bytes Unit:s)	Max Time (2 bytes Unit:s)	PH Change (2Byte ,0.01p H)	Temperature Change (2Bytes,unit:0 .01°C)	ORP Change (2Byte,1mv)	
Config Report Rsp		0x81			Sta	atus (0x00_succe	ess)		
Read Config Report Req		0x02							
Read Config Report Rsp	R900P D05AO	0x82	0x0126	Min Time (2bytes Unit:s)	Max Time (2bytes Unit:s)	PH Change (2Byte ,0.01p H)	Temperature Change (2Bytes,unit:0 .01°C)	ORP Change (2Byte,1mv)	
Set Shock Sensor Sensitivity Req	1	0x03	0.10120		Shock S	ensor Sensitivity	(1Byte)		
Set Shock Sensor Sensitivity Rsp		0x83		Status (0x00_success)					
Get Shock Sensor Sensitivity Req		0x04							
Get Shock Sensor Sensitivity Rsp		0x84			Shock S	ensor Sensitivity	(1Byte)		

Config Digital OutPut Req	0x05	Digital OutPut Type (1Byte) 0x00_Normally Low Level, 0x01_Normally High Level	Out Pulse Time (1byte Unit:s)	Bind Alarm Source (1Byte) Bit0_Low PH Alarm, Bit1_High PH Alarm, Bit2_Low Temp With PH Alarm, Bit3_ High Temp With PH Alarm, Bit4_ Low OPR Alarm, Bit5_High ORP Alarm, Bit6-7:Reserved	Channel (1Byte) 0x00_Channel 1 0x01_Channel 2	
Config Digital OutPut Rsp	0x85		Status (0x0	00_success)		
Read Config Digital OutPut Req	0x06	Channel (1Byte) $0x00_Channel 1$ $0x01_Channel 2$				
Read Config Digital OutPut Rsp	0x86	Digital OutPut Type (1Byte) 0x00_Normally Low Level 0x01_Normally High Level)	Out Pulse Time (1bytes Unit:s)	Bind Alarm Source (1Byte) Bit0_Low PH Alarm Bit1_High PH Alarm Bit2_ Low Temp With PH Alarm Bit3_ High Temp With PH Alarm Bit4_ Low ORP Alarm Bit5_High ORP Alarm Bit6-7:Reserved	Channel (1Byte) 0x00_Channel 1 0x01_Channel 2	
Trigger Digital OutPut Req	0x07	Out Pulse Time (1byte Unit:s)		0x00_C	hannel 1	
Trigger Digital OutPut Rsp	0x87	Status(0x00_success)				

Config Digital OutPut Req	0x05	Digital OutPut Type (1 Byte) 0x00_Normally Low Level 0x01_Normally High Level	Out Pulse Time (1 Byte, unit: s)	Bind Alarm Source (2 Bytes) Bit0_Low PH Alarm Bit1_High PH Alarm Bit2_Low NTU Alarm Bit3_High NTU Alarm Bit4_Low Residual Chlorine Alarm Bit5_High Residual Chlorine Alarm Bit6_Low Temp With PH Alarm Bit7_High Temp With PH Alarm Bit8_Low Temp With NTU Alarm Bit9_High Temp With NTU_Alarm Bit9_High Temp With NTU_Alarm	Channel (1 Byte) 0x00_Channel 1 0x01_Channel 2		
Config Digital OutPut Rsp	0x85	Status (0x00_success)					
Read Config Digital OutPut Req	0x06	Channel (1Byte) $0x00_Channel 1$ $0x01_Channle 2$					
Read Config Digital OutPut Rsp	0x86	Digital OutPut Type (1 Byte) 0x00_Normally Low Level 0x01_Normally High Level	Out Pulse Time (1 Byte, unit: s)	Bind Alarm Source (2 Bytes) Bit0_Low PH Alarm Bit1_High PH Alarm Bit2_Low NTU Alarm Bit3_High NTU Alarm Bit4_Low Residual Chlorine Alarm Bit5_High Residual Chlorine Alarm Bit6_Low Temp With PH Alarm Bit7_High Temp With PH Alarm Bit8_Low Temp With NTU Alarm Bit9_High Temp With NTU Alarm Bit9_High Temp With NTU Alarm	Channel (1 Byte) 0x00_Channel 1 0x01_Channel 2		
Trigger Digital OutPut Req	0x07	Out Pulse Time (1 Byte, unit: s)		Channel (1Byte) $0x00_Channel 1$ $0x01_Channel 2$			
Trigger Digital OutPut Rsp	0x87	Status (0x00_success)					

(1) Configure device parameters

Min Time = 0x003C (60s), Max Time = 0x003C (60s)

PH Change = 0x0064 (1), Temperature Change = 0x0064 (1°C), ORP Change = 0064 (100mv)

Downlink: 010126003C003C006400640064
Response: 81012600 (configuration success)

81012601 (configuration fail)

(2) Read device parameters

Downlink: 020126

Response: 820126003C003C006400640064 (Current device parameters)

(3) Configure Shock Sensor Sensitivity = 0x14(20)

Downlink: 030126<u>14</u>

Response: 83012600 (configuration success)

83012601 (configuration fail)

Note: Shock Sensor Sensitivity range = 0x01 to 0x14

0xFF (disables vibration sensor)

(4) Read Shock Sensor Sensitivity

Downlink: 040126

Response: 84012614 (Current device parameters)

(5) Configure Digital OutPut Type = 0x00 (Normally Low Level),

OutPulse Time = 0xFF (disable pulse duration),

Bind Alarm Source = 0x02 = 0010 (BIN)

Channel = 0x00_Channel 1

Downlink: 05012600FF0200

Response: 85012600 (configuration success)

85012601 (configuration fail)

(6) Read DO parameters

Downlink: 06012600

Response: 86012600FF0200

(7) Configure OutPulse Time = 0x0A (10 seconds)

Downlink: 070126<u>0A0</u>0

Response: 87012600 (configuration success)

5.3 Example of Set Sensor Alarm Threshold Cmd

FPort: 0x10

Con 1 Descriptor	Cmd ID		n.	-1 - 1 (10 D-4)				
Cmd Descriptor	(1 Byte)	Payload (10 Bytes)						
				Sensor Low Threshold				
	0x01	Channel	Sensor Type	(4 Bytes)	(4 Bytes)			
Set Sensor		(1 Byte)	(1Byte)	unit:	unit:			
Alarm		0x00_Channel1,	0x00_Disable ALL,	Temperature – 0.01°C				
Threshold Req	0.101	0x01_Chanel2,	$0x01$ _Temperature, $pH - 0.01pH$ $pH - 0.01pH$					
Timeshold Req		0x02_Channel3,	$0x1A_PH$,	ORP – 1mv				
		etc.	$0x1B_ORP$	0Xfffffff_DISABLE Low				
				Threshold				
Set Sensor		Status						
Alarm	0x81	(1 Byte)	Reserved (9 Bytes, Fixed 0x00)					
Threshold Rsp		0x00_success						
	0x02	Channel	Sensor Type	e				
		(1 Byte)	(1Byte)					
Get Sensor		0x00_Channel1,	0x00 Disable ALL,					
Alarm		0x01_Chanel2,	0x01 Temperature,	Reserved (8 Bytes, Fixed 0x00)				
Threshold Req		0x02 Channel3,	0x1A_PH,					
		etc.	0x1B_ORP					
				Sensor High Threshold	Sensor Low Threshold			
	0x82	Channel	Sensor Type	(4 Bytes)	(4 Bytes)			
Get Sensor		(1 Byte)	(1Byte)	unit:	unit:			
		0x00_Channel1,	0x00_Disable ALL,	Temperature – 0.01°C	Temperature – 0.01°C			
Alarm Threshold Rsp		0x01_Chanel2,	0x01_Temperature,	pH – 0.01pH	pH – 0.01pH			
		0x02_Channel3,	0x1A_ PH,	ORP – 1mv	ORP – 1mv			
		etc.	$0x1B_ORP$	0Xffffffff_DISABLE High	0Xfffffff_DISABLE Low			
				Threshold	Threshold			

Note: a. Set Sensor High/Low Threshold as 0xFFFFFFF to disable threshold.

b. The last configuration will be saved when the device is reset to factory setting.

(1) Configure parameters

Channel = 0x00, Sensor Type = 0x1B (ORP),

Sensor High Threshold = 0x000000C8 (200mv), Sensor Low Threshold = 0x00000064 (100mv)

(2) Get Sensor Alarm Threshold Req

Response: 82001B000000C800000064 (Current device parameters)

(3) Clear all thresholds (Sensor Type = 0x00)

5.4 Example of Global Calibrate Cmd

FPort: 0x0E

Description	Cmd ID	Sensor Type (1 Byte)	PayLoad (Fix = 9 Bytes)					
Set Global Calibrate Req	0x01	0x01_Temperature Sensor 0x13_PH Sensor 0x1B_ORP Sensor	Channel (1 Byte) 0_Channel1 1_Channel2, etc.	Multiplier (2 Bytes, Unsigned)	Divisor (2 Bytes, Unsigned)	DeltValue (2 Bytes, Signed)	Reserved (2 Bytes, Fixed 0x00)	
Set Global Calibrate Rsp	0x81		Channel (1 Byte) 0_Channel1 1_Channel2, etc.	Status (1 Byte) 0x00_success)	Reserved (7 Bytes, Fixed 0x00)		x00)	
Get Global Calibrate Req	0x02		Channel (1 Byte) 0_Channel1 1_Channel2, etc.	Reserved (8 Bytes, Fixed 0x00)				
Get Global Calibrate Rsp	0x82		Channel (1 Byte) 0_Channel1 1_Channel2, etc.	Multiplier (2 Bytes, Unsigned)	Divisor (2 Bytes, Unsigned)	DeltValue (2 Bytes, Signed)	Reserved (2 Bytes, Fixed 0x00)	
Clear Global Calibrate Req	0x03	Reserved (10 Bytes, Fixed 0x00)						
Clear Global Calibrate Rsp	0x83	Status (1 Byte, 0x00_success)	Reserved (9 Bytes, Fixed 0x00)					

0x01_Temperature Sensor; channel = 0x01

0x13_PH Sensor; channel = 0x00

0x1B_ORP Sensor; channel=0x02

(1) Set Global Calibrate Req

Calibrate ORP Sensor by increasing 100mv

Channel: 0x02 (channel 2); Multiplier: 0x0001 (1); Divisor: 0x0001 (1); Delt Value: 0x0064 (100)

Downlink: 011B020001000000640000

811B0201000000000000000000000 (configuration fail)

(2) Get Global Calibrate Req: Read parameters

Response: 821B020001000000640000 (Current device parameters)

(3) Clear Global Calibrate Req

5.5 Example of Netvox LoRaWAN Rejoin

Fport:0x20

Check if the device is connected to the network during Rejoin Check Period. If the device does not respond within the Rejoin Threshold, it will be rejoined back to the network automatically.

Cmd Descriptor	Cmd ID (1 Byte)	Payload (Var Bytes)							
Set Netvox LoRaWAN Rejoin Req	0x01	Rejoin Check Period (4 Bytes, unit: 1s) 0x FFFFFFF_Disable Netvox Rejoin Function			Rejoin Threshold (1 Byte)				
Set Netvox LoRaWAN Rejoin Rsp	0x81	Status (1 Byte) Reserved (4 Bytes, Fixe) 0x00_success			xed 0x00)				
Get Netvox LoRaWAN Rejoin Req	0x02		Reserved (5 Bytes, Fixed 0x00)						
Get Netvox LoRaWAN Rejoin Rsp	0x82	Rejoin Check Period (4 Bytes, unit: 1s) 0x FFFFFFF_Disable Netvox Rejoin Function						Rejoin Threshold (1 Byte)	
Set Netvox LoRaWAN Rejoin Time Req	0x03	1 st Rejoin Time (2 Bytes, unit:1 min)	2 nd Rejoin Time (2 Bytes, unit: 1 min)	3 rd Rejoin Time (2 Bytes, unit: 1 min)	4 th Rejoin Time (2 Bytes, unit: 1 min)	5 th Rejoin Time (2 Bytes, unit: 1 min)	6 th Rejoin Time (2 Bytes, unit: 1 min)	7 th Rejoin Time (2 Bytes, unit: 1 min)	
Set Netvox LoRaWAN Rejoin Time Rsp	0x83	Status (1 Byte) 0x00_success Reserved (13 Bytes, Fixed 0			0x00)				
Get Netvox LoRaWAN Rejoin Time Req	0x04	Reserved (15 Bytes, Fixed 0x00)							
Get Netvox LoRaWAN Rejoin Time Rsp	0x84	1 st Rejoin Time (2 Bytes, unit:1 min)	2 nd Rejoin Time (2 Bytes, unit: 1 min)	3 rd Rejoin Time (2 Bytes, unit: 1 min)	4 th Rejoin Time (2 Bytes, unit: 1 min)	5 th Rejoin Time (2 Bytes, unit: 1 min)	6 th Rejoin Time (2 Bytes, unit: 1 min)	7 th Rejoin Time (2 Bytes, unit: 1 min)	

Note:

- a. Set Rejoin Check Threshold as 0xFFFFFFFF to stop the device from rejoining the network.
- b. The last configuration would be kept when the device is factory reset.
- c. Default setting:

```
Rejoin Check Period = 2 (hr) and Rejoin Threshold = 3 (times)

1^{st} Rejoin Time = 0x0001 (1 min), 2^{nd} Rejoin Time = 0x0002 (2 mins), 3^{rd} Rejoin Time = 0x0003 (3 mins),

4^{th} Rejoin Time = 0x0004 (4 mins), 5^{th} Rejoin Time = 0x003C (60 mins), 6^{th} Rejoin Time = 0x0168 (360 mins),

7^{th} Rejoin Time = 0x05A0 (1440 mins)
```

d. If device loses connection from network before data are reported, the data will be saved and reported every 30 seconds after the device is reconnected. Data will be reported based on the format of Payload + Unix timestamp. After all data are reported, the report time will be back to the normal setting.

(1) Command Configuration

```
Set Rejoin Check Period = 0x00000E10 (3600s), Rejoin Threshold = 0x03 (3 times)
```

Downlink: 0100000E1003

Response: 81000000000 (Configuration success) 810100000000 (Configuration failure)

(2) Read Rejoin Check Period and Rejoin Threshold

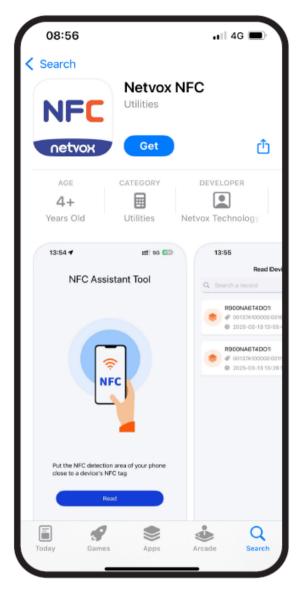
Downlink: 020000000000

Response: 8200000E1003 (Current device parameters)

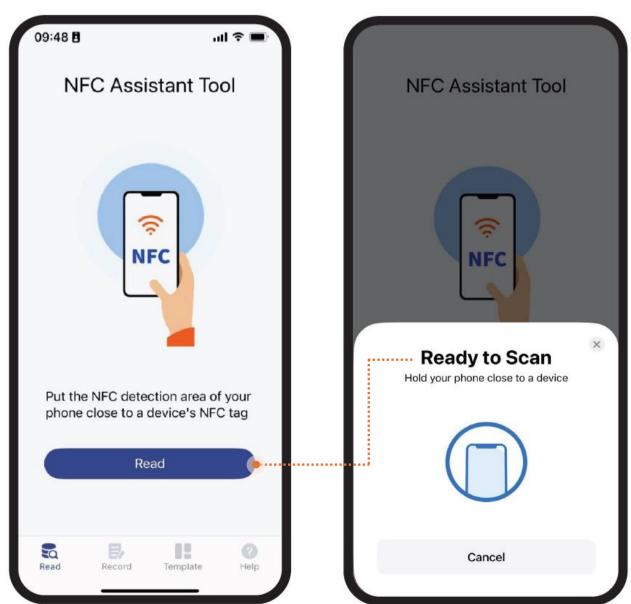
(3) Configure Rejoin Time

```
1^{st} Rejoin Time = 0x0001 (1 min), 2^{nd} Rejoin Time = 0x0002 (2 mins), 3^{rd} Rejoin Time = 0x0003 (3 mins), 4^{th} Rejoin Time = 0x0004 (4 mins), 5^{th} Rejoin Time = 0x0005 (5 mins), 6^{th} Rejoin Time = 0x0006 (6 mins), 7^{th} Rejoin Time = 0x0007 (7 mins)
```

Downlink: 03<u>0001000200030004000500060007</u>


(4) Read Rejoin Time parameter

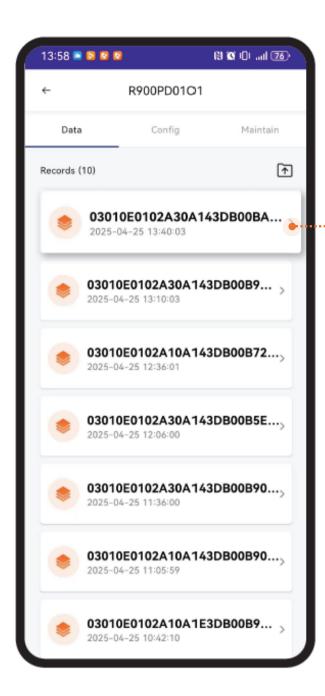
Response: 840001000200030004000500060007 (Current device parameters)

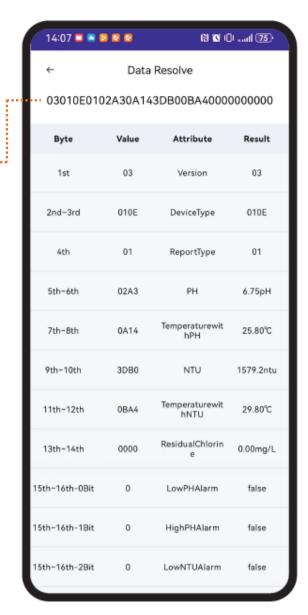

6. Read R900 Data on NFC App

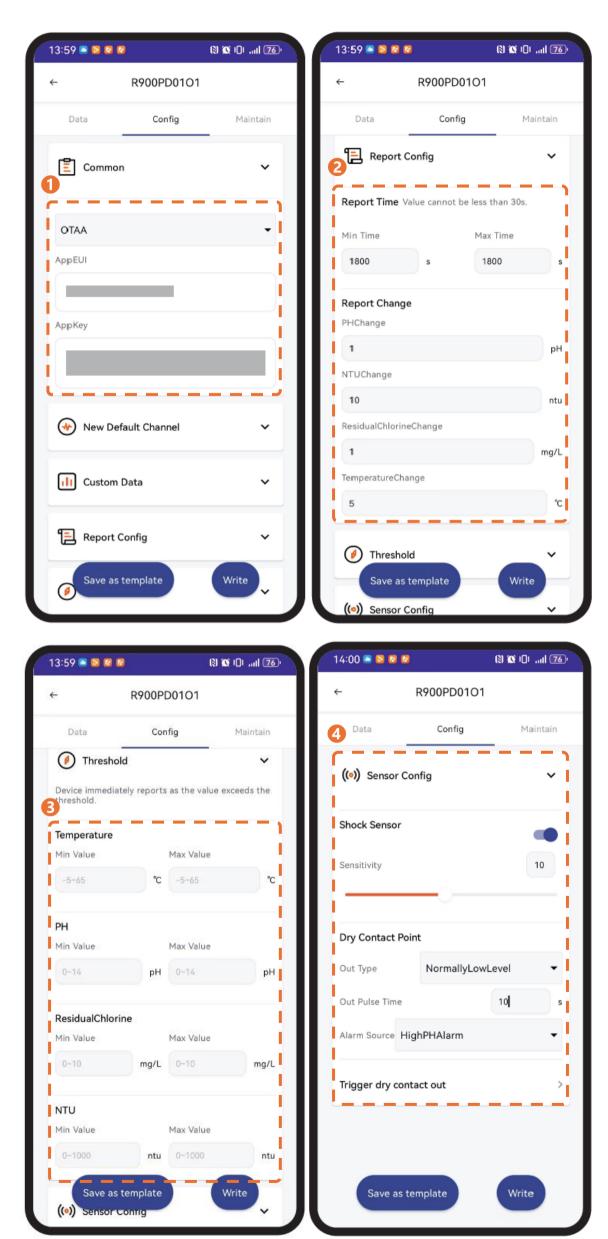
(1) Download Netvox NFC app.

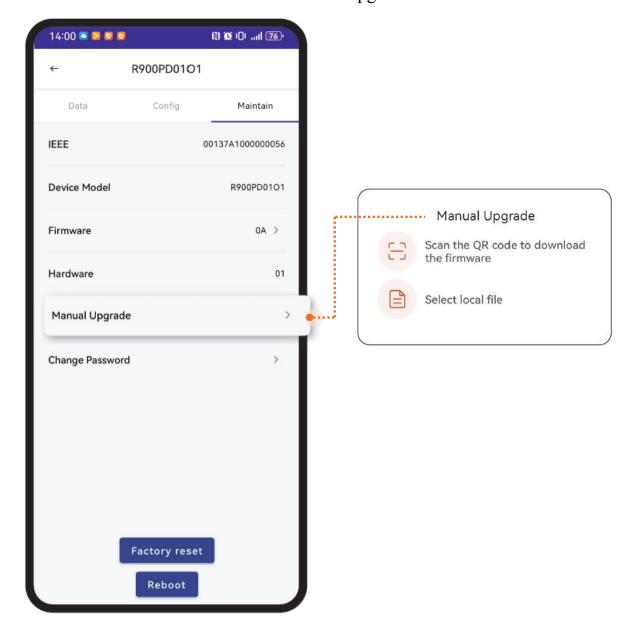
Please make sure your phone supports NFC.

(2) Enable NFC in Settings and find your phone's NFC area. Open the app and click Read.

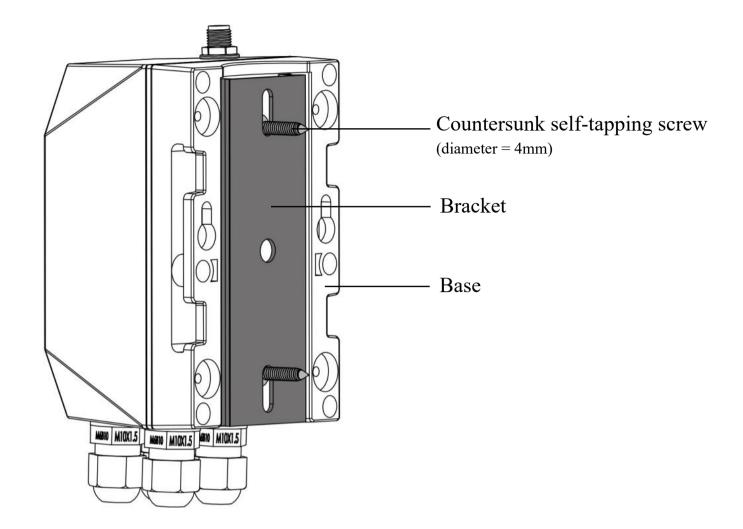



(3) Hold your phone near R900's NFC tag.

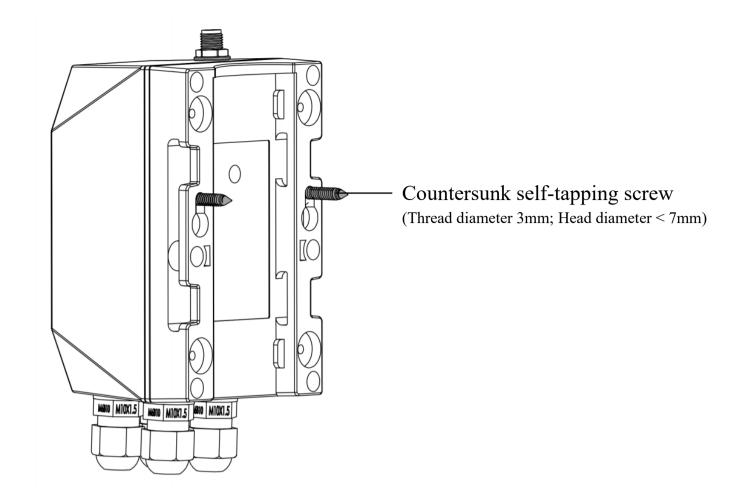

(4) After R900 is successfully read, the latest 10 data will be displayed. Select a data and go to the Data processing.



- (5) Click Config to edit R900's settings, including network connection, report configuration, threshold, and sensor parameters.
- Note: a. To configure device parameters, users need to enter password: 12345678 (default).
 - b. Password can be changed on the app and reset to default when R900 is factory reset.

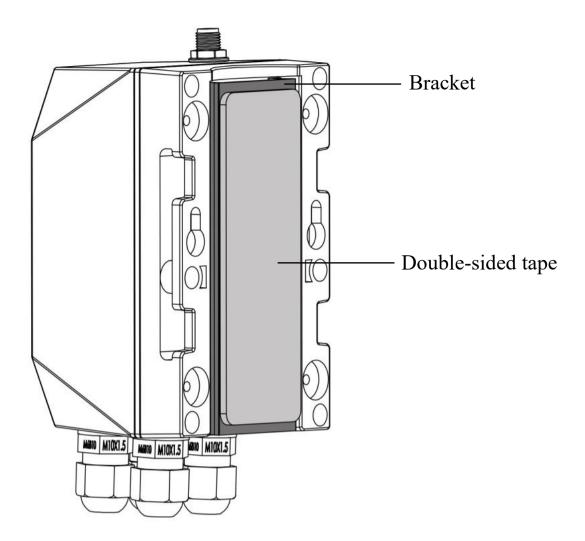

(6) Click Maintain to check R900PD05AO1's info and available upgrade.

7. Installation


R900

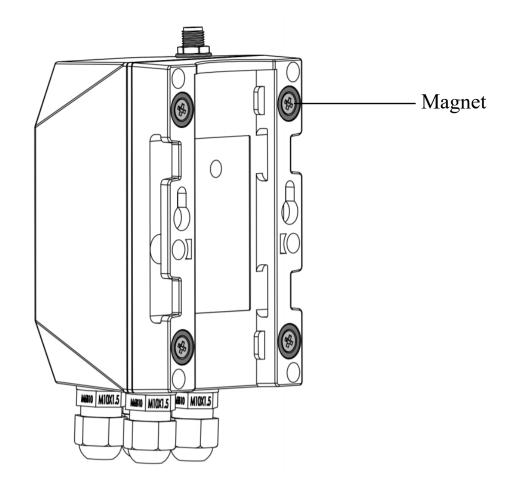
- Standard
- (1) Screws + Bracket

- 1 Mount the bracket on a surface with 2 counter self-tapping screws.
- 2 Hold R900 and slide down to connect the base and bracket.

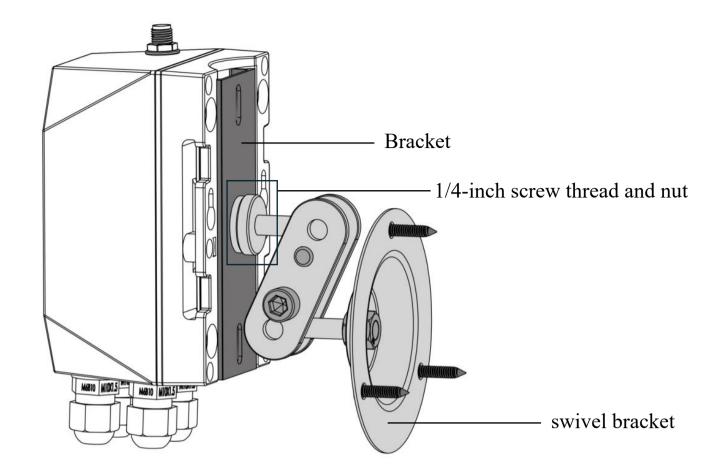

(2) Screws

- 1 Mount 2 countersunk self-tapping screws or expansion bolts on the wall.

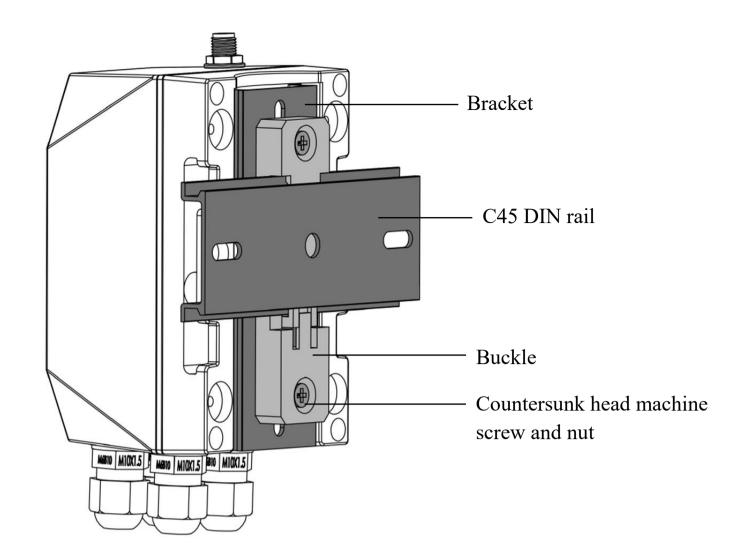
 The distance between the two screws should be 48.5mm. The gap between the bottom of the screw head and the wall should be 3mm.
- 2 After the screws are mounted, align the holes of the base with the screws.
- 3 Move R900 down to clamp it.


(3) Double-Sided Tape

- 1 Stick the double-sided tape on the bracket.
- 2 Peel the liner and fix R900 on the surface.
- 3 Press to ensure R900 is firmly installed.

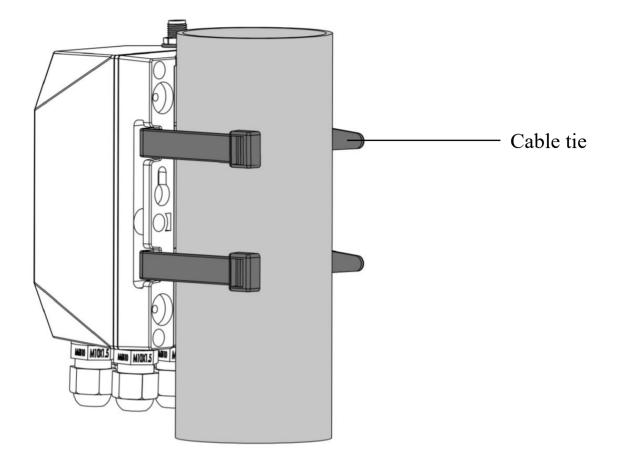

Note: Please make sure the surface is clean and dry before applying double-sided tape.

- Optional
- (1) Magnet


1 Fix the R900 on a metal surface.

(2) Swivel Bracket

- 1 Insert a 1/4-inch screw thread into the hole of the bracket.
- 2 Tighten the thread with a nut.
- 3 Mount the swivel bracket with self-tapping screws and expansion bolts.
- 4 Hold R900 and slide down to connect the base and bracket.


(3) DIN Rail

- 1 Mount the rail buckle onto R900's bracket with countersunk head machine screws and nuts.
- 2 Snap the buckle onto the DIN rail.
- 3 Hold R900 and slide down to connect the base and bracket.

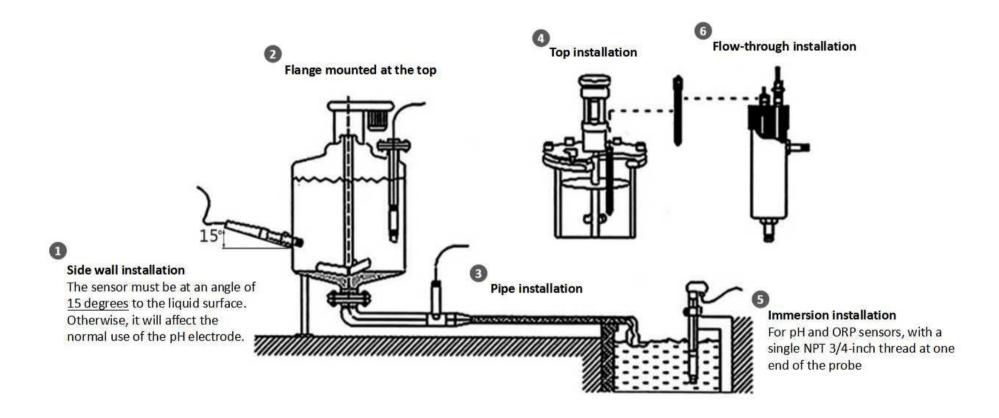
• Prepared by customers

(1) Cable Tie

- 1 Insert cable ties through the holes of the base.
- 2 Insert the pointed end through the slot.
- 3 Tighten the cable ties and make sure R900 is fixed firmly around a column.

pH / ORP Sensor Installation

• Remove the protective cap from the front end of the device before use.


▼ pH sensor

▼ ORP sensor

- Both pH and ORP sensors have NPT 3/4 threads on both ends of the probe. They support the installation method shown in the picture below.
- Immersion Installation: The pH and ORP sensors' cable should pass through the waterproof bracket. The 3/4 thread on the top of the sensors should be connected to the 3/4 thread on the waterproof bracket using thread seal tape.
- Pipeline Installation: Connect the 3/4 thread at the bottom of the pH and ORP sensors transmitters to the pipeline.

Cautions:

- 1. The transmitter should be installed in an area with steady water flow and no bubbles and debris, to avoid significant measurement errors and potential damage to the device.
- 2. If the device malfunctions, do not try to open or repair it by yourself. Please contact the manufacturer as soon as possible.
- 3. Please do not use this device in corrosive liquids or liquids containing organic solvents.
- 4. During installation and use, make sure the cables are not pulled or placed under tension.

Maintenance

pH sensor & ORP sensor

- Before using the pH and the ORP sensor, please clean it with distilled water (or deionized water), and dry it with filter paper to prevent impurities from entering the liquid to be tested. After cleaning, dip 1/3 of the sensor into a liquid.
- Please clean the sensor when it's not in use. Insert it in a protective case or a container with 3.5 mol/L potassium chloride solution.
- Please check if the terminal is dry. If it is stained, wipe it with absolute alcohol and dry it. Avoid long-term immersion in distilled water or protein solution and prevent contact with silicone oil.
- For an aging sensor, its glass membrane may become translucent or have sediments, which can be washed with dilute hydrochloric acid and rinsed with water.

When the calibration and measurement cannot be performed after the sensor is maintained based on the instructions, please replace the electrode.

8. Important Maintenance Instructions

Kindly pay attention to the following to achieve the best maintenance of the product:

- Keep the device dry. Rain, moisture, or any liquid might contain minerals and thus corrode electronic circuits. If the device gets wet, please dry it completely.
- Do not use or store the device in a dusty or dirty environment. It might damage its detachable parts and electronic components.
- Do not store the device under extremely hot conditions. High temperatures can shorten the life of electronic devices, destroy batteries, and deform or melt some plastic parts.
- Do not store the device in places that are too cold. Otherwise, when the temperature rises, moisture that forms inside the
 device will damage the board.
- Do not throw, knock, or shake the device. Rough handling of equipment can destroy internal circuit boards and delicate structures.
- Do not clean the device with strong chemicals, detergents, or strong detergents.
- Do not apply the device with paint. Smudges might block the device and affect the operation.
- Do not throw the battery into the fire, or the battery will explode. Damaged batteries may also explode.

All of the above applies to your device, battery, and accessories. If any device is not operating properly, please take it to the nearest authorized service facility for repair