

Wireless Water Leak Detector - Rope Sensor

with 1 x Digital Output

R900A03O1 User Manual

Copyright©Netvox Technology Co., Ltd.

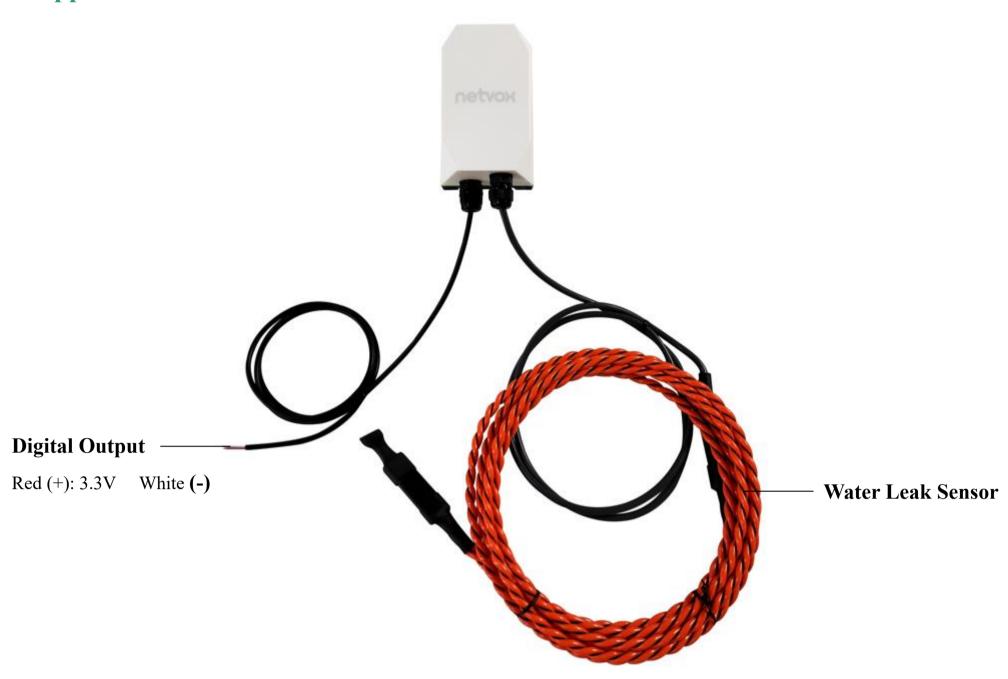
This document contains proprietary technical information which is the property of NETVOX Technology. It shall be maintained in strict confidence and shall not be disclosed to other parties, in whole or in part, without written permission of NETVOX Technology. The specifications are subject to change without prior notice.

Contents

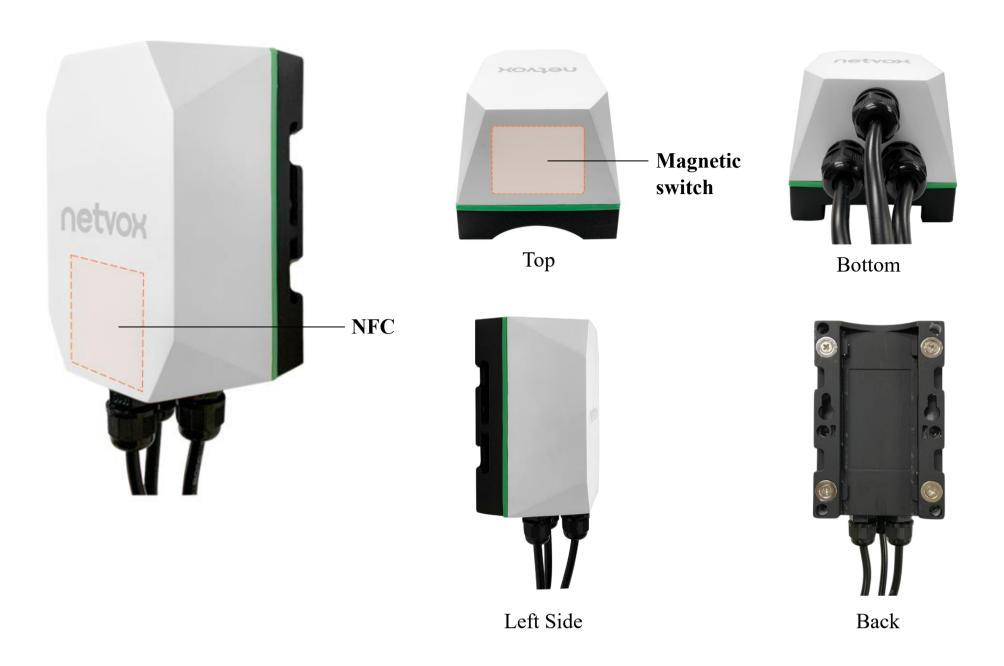
1. Introduction	1
2. Appearance	2
3. Features	4
4. Setup Instructions	5
5. Data Report	7
5.1 Example of ReportDataCmd	7
5.2 Example of ConfigureCmd	9
5.3 Example of NetvoxLoRaWANRejoin	12
5.4 Example for MinTime/MaxTime logic	14
6. Read R900 Data on NFC App	16
7. Installation	20
8. Battery Passivation	26
9. Important Maintenance Instructions	26

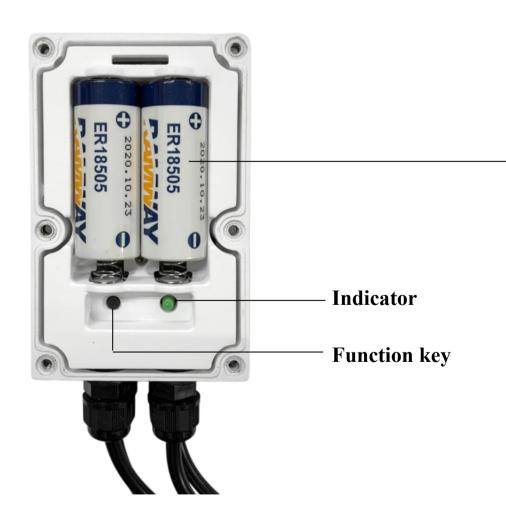
1. Introduction

R900A03O1 is a wireless temperature sensor with a digital output. It transmits digital signals to a third-party device when detecting water leak. With up to 7 flexible installation options, R900A03O1 integrates easily into various environments. In addition, with support for Netvox NFC app, users can easily configure settings, update firmware, and access data simply by tapping their smartphone to the device.


LoRa Wireless Technology

LoRa is a wireless communication technology famous for its long-distance transmission and low power consumption. Compared with other communication methods, LoRa spread spectrum modulation technique greatly extends the communication distance. It can be widely used in any case that requires long-distance and low-data wireless communications. For example, automatic meter reading, building automation equipment, wireless security systems, and industrial monitoring. It has features like small size, low power consumption, long transmission distance, strong anti-interference ability, and so on.


LoRaWAN


LoRaWAN uses LoRa technology to define end-to-end standard specifications to ensure interoperability between devices and gateways from different manufacturers.

2. Appearance

Battery

★ also support ER14505 battery with battery converter case

3. Features

- Output digital signal when detecting water leaking
- Powered by 2* 3.6V ER18505 batteries (also support ER14505 batteries with battery converter case)
- Support magnetic switch to turn on/off and factory reset device
- Up to 7 installation methods for different kinds of scenarios
- Report when device disconnects from the network
- Support NFC. Configure and upgrade firmware on Netvox NFC app
- Store up to 10000 data
- LoRaWANTM Class A compatible
- Frequency hopping spread spectrum
- Configuration parameters can be configured through third-party software platforms, data can be read, and alarms can be set via SMS text and email (optional)
- Applicable to the third-party platforms: Actility/ThingPark, TTN, MyDevices/Cayenne
- Low power consumption and longer battery life

Note: Battery life is determined by the sensor reporting frequency and other variables, please visit http://www.netvox.com.tw/electric/electric calc.html for battery life and calculation.

4. Setup Instructions

On / Off

Power on	Insert 2* ER18505 batteries or 2* ER14505 batteries with battery converter case.
Power off	Remove the batteries.

Function key

Turn on	Press and hold the function key for 3 seconds until the green indicator flashes once.		
	Step 1. Press and hold the function key for 5 seconds until the green indicator flashes once.		
Turn off	Step 2. Release the function key and short press it in 5 seconds.		
	Step 3. The green indicator flashes 5 times. R900 turns off.		
	Step 1. Press and hold the function key for 10 seconds. The green indicator flashes once		
	every 5 seconds.		
Factory reset	Step 2. Release the function key and short press it in 5 seconds.		
	Step 3. The green indicator flashes 20 times. R900 is factory reset and off.		

Magnetic switch

Turn on	Hold a magnet near R900 for 3 seconds until the green indicator flashes once.		
	Step 1. Hold a magnet close to R900 for 5 seconds. The green indicator flashes once.		
Turn off	Step 2. Remove the magnet and get close to R900 in 5 seconds.		
	Step 3. The green indicator flashes 5 times. R900 turns off.		
	Step 1. Hold a magnet close to R900 for 10 seconds. The green indicator flashes once		
	every 5 seconds.		
Factory reset	Step 2. Remove the magnet and get close to R900 in 5 seconds.		
	Step 3. The green indicator flashes 20 times. R900 is factory reset and off.		

Note:

- a. Remove and insert the battery; the device is off by default.
- b. 5 seconds after powering on, the device will be in engineering test mode.
- c. The on/off interval should be about 10 seconds to avoid the interference of capacitor inductance and other energy storage components.
- d. After the batteries are removed, the device can still operate for a while until the power supported by the supercapacitor runs out.

Join a Network

	Turn on the device to search the network.		
First time joining the network	The green indicator stays on for 5 seconds: Success		
	The green indicator remains off: Fail		
Had joined the network before	Turn on the device to search the network.		
(Device is not factory reset.)	The green indicator stays on for 5 seconds: Success		
	The green indicator remains off: Fail		
	(1) Please turn off the device and remove the batteries to save power.		
Fail to join the network	(2) Please check the device verification information on the gateway or consult your		
	platform server provider.		

Function key

	Device is in the network
	The green indicator flashes once. After sampling is completed, the device reports a data
Short press	packet.
	Device is not in the network
	The green indicator remains off.

Note: The function key does not work during sampling.

Magnetic switch

	Device is in the network
	The green indicator flashes once. After sampling is completed, the device reports a data
Move magnet close to the switch	packet.
and remove it	
	<u>Device is not in the network</u>
	The green indicator remains off.

Sleep Mode

	Sleeping period: Min Interval.
The device is on and in the network.	When the reportchange exceeds the setting value or the state changes: send a data
and in the network.	report based on the Min Interval.

Low Voltage Alarm

Low voltage	3.2V

Note: To ensure the accuracy of data, please change the battery when it drops to low voltage.

5. Data Report

35 seconds after the device is powered on, it will send a version packet and data including voltage and status of water leak.

Default setting:

Min Interval = 0x0384 (900s)

Max Interval = 0x0384 (900s) // should not be less than 30 seconds

Water Leak Detection:

0x00_noLeak

0x01_Leak

Note: a. If no configuration is done, the device sends data based on the default settings.

b. Please refer to Netvox LoRaWAN Application Command document and Netvox Lora Command Resolver http://www.netvox.com.cn:8888/cmddoc to resolve uplink data.

Data report configuration and sending period are as follows:

Min Interval	Max Interval		Current Change ≥	Current Change <
(unit: second)	(unit: second)	Reportable Change	Reportable Change	Reportable Change
Any number between	Any number between		Report	Report
30 to 65535	Min time to 65535	Cannot be 0	per Min Interval	per Max Interval

5.1 Example of ReportDataCmd

FPort: 0x16

Bytes 1		2	1	Var (length based on the payload)
Version		DeviceType	ReportType	NetvoxPayLoadData

Version – 1 bytes – 0x03——the Version of NetvoxLoRaWAN Application Command Version

DeviceType – 2 bytes – Device Type of Device

The devicetype is listed in Netvox LoRaWAN Application Devicetype V3.0.doc

ReportType – 1 byte – the presentation of the NetvoxPayLoadData, according to the devicetype

NetvoxPayLoadData – Var bytes (length based on the payload)

Tips

1. Battery Voltage

The voltage value is bit 0 – bit 6, bit 7=0 is normal voltage, and bit 7=1 is low voltage.

Battery = 0xA0, binary = $1010\ 0000$, if bit 7 = 1, it means low voltage.

The actual voltage is $0010\ 0000 = 0x20 = 32$, 32*0.1v = 3.2V

2. Version Packet

When Report Type = 0x00 is the version packet, such as $030113\underline{00}0A01\underline{20250424}$, the firmware version is 2025.04.24.

3. Data Packet

When Report Type=0x01 is the data packet.

Device	DeviceType	ReportType	NetvoxPayLoadData		
R900A03O1	0x0113	0x01	Battery (1 Byte) unit: 0.1V	WaterLeak (1 Byte) 0: noLeak 1: Leak	ShockTamperAlarm (1 Byte) 0x00_NoAlarm, 0x01_Alarm

Example of Uplink: **03011301240101**

1st Byte (03): Version

2nd 3rd Byte (0113): DeviceType — R900A03O1

4th (01): ReportType

5th Byte (24): Battery -3.6V 24 (Hex) = 36 (Dec), 36* 0.1v = 3.6V

6th Byte (01): WaterLeak – Leak

7th Byte (01): ShockTamperAlarm — alarm

5.2 Example of ConfigureCmd

FPort: 0x17

Bytes	1	2	Var (length based on the payload)		
	CmdID	DeviceType	NetvoxPayLoadData		

CmdID - 1 byte

DeviceType – 2 bytes – Device Type of Device

The devicetype is listed in Netvox LoRaWAN Application Devicetype3.0.doc

 ${\bf NetvoxPayLoadData}-{\bf Var\ bytes\ (length\ based\ on\ the\ payload)}$

Description	Device	Cmd ID	Device Type	NetvoxPayLoadData					
ConfigReport Req		0x01		MinT (2 Bytes,			Time s, unit: s)		
ConfigReport Rsp		0x81	0x81	Status (0x00_success)					
ReadConfigR eportReq		0x02							
ReadConfigR eportRsp	0x82			MinTime (2 Bytes, unit: s)		MaxTime (2 Bytes, unit: s)			
SetShockSens orSensitivityR eq		0x03		ShockSensorSensitivity (1 Byte)					
SetShockSens orSensitivityR sp	R900A 03O1	0x83	0x0113	Status (0x00_success)					
GetShockSen sorSensitivity Req	0301	0x04							
GetShockSen sorSensitivity Rsp		0x84		ShockSensorSensitivity (1 Byte)					
ConfigDigital OutPutReq		0x05		DigitalOutPutType (1 Byte) 0x00_NormallyLow Level 0x01_NormallyHigh Level	OutPulseTime (1 Byte, unit: s)	BindAlarmSource (1 Byte) Bit0_WaterLeak Bit1-7: Reserved	Channel (1 Byte) 0x00_Channel1 0x01_Channle2		
ConfigDigital OutPutRsp		0x85		Status (0x00_success)					

Read		Channel (1Byte)							
ConfigDigital OutPutReq	0x06		0x00_Channel1 0x01_Channle2						
Out unteq				OXOI					
Read ConfigDigital OutPutRsp	0x86		DigitalOutPutType (1 Byte) 0x00_NormallyLow Level 0x01_NormallyHigh Level	OutPulseTime (1 Byte, unit: s)	E	ndAlarmSource (1 Byte) Bit0_WaterLeak Bit1-7: Reserved	Channel (1Byte) 0x00_Channel1 0x01_Channle2		
TriggerDigital OutPutReq	0x07		OutPulseTime (1 Byte, unit: s)			Channel (1 Byte) 0x00_Channel1 0x01_Channle2			
TriggerDigital OutPutRsp	0x87		Status (0x00_success)						

(1) Configure device parameters

MinTime = 0x003C (60s), MaxTime = 0x003C (60s)

Downlink: 010113003C003C

Response: 81011300 (configuration success)

81011301 (configuration fail)

Read device parameters

Downlink: 020113

Response: 820113003C003C

(2) Configure ShockSensorSensitivity = 0x14 (20)

Downlink: 03011314

Response: 83011300 (configuration success)

83011301 (configuration fail)

Note: ShockSensorSensitivity range = 0x01 to 0x14

0xFF (disables vibration sensor)

Read ShockSensorSensitivity

Downlink: 040113

Response: 84011314 (device's current parameters)

(3) Configure DigitalOutPutType = 0x00 (NormallyLowLevel),

OutPulseTime = 0xFF (disable pulse duration),

 $BindAlarmSource = 0x01 = 0000\ 0001\ (BIN) \quad Bit0_LowTemperatureAlarm = 1$

(when Waterleak is triggered, DO outputs signals)

Channel = 0x00_Channel 1

Downlink: 05011300FF0100

Response: 85011300 (configuration success)

85011301 (configuration fail)

Read DO parameters

Downlink: 06011300

Response: 86011300FF0100

Configure OutPulseTime = 0x03 (3 seconds)

Downlink: 0701130300

Response: 87011300 (configuration success)

87011301 (configuration fail)

5.3 Example of NetvoxLoRaWANRejoin

Fport:0x20

Check if the device is connected to the network during RejoinCheckPeriod. If the device does not respond within the RejoinThreshold, it will be rejoied back to the network automatically.

CmdDescriptor	CmdID (1 Byte)	Payload (Var Bytes)						
SetNetvoxLoRaWA NRejoinReq	0x01	RejoinCheckPeriod (4 Bytes, unit: 1s) 0x FFFFFFF_DisableNetvoxRejoinFunction				RejoinThreshold (1 Byte)		
SetNetvoxLoRaWA NRejoinRsp	0x81	(1 E	atus Byte) success	Reserved (4 Bytes, Fixed 0x00)				
GetNetvoxLoRaWA NRejoinReq	0x02		Reserved (5 Bytes, Fixed 0x00)					
GetNetvoxLoRaWA NRejoinRsp	0x82	RejoinCheckPeriod (4 Bytes, unit: 1s) 0x FFFFFFF_DisableNetvoxRejoinFunction				RejoinThreshold (1 Byte)		
SetNetvoxLoRaWA NRejoinTimeReq	0x03	1 st Rejoin Time (2 Bytes, unit:1 min)	2 nd Rejoin Time (2 Bytes, unit: 1 min)	3 rd Rejoin Time (2 Bytes, unit: 1 min)	4 th Rejoin Time (2 Bytes, unit: 1 min)	5 th Rejoin Time (2 Bytes, unit: 1 min)	6 th Rejoin Time (2 Bytes, unit: 1 min)	7 th Rejoin Time (2 Bytes, unit: 1 min)
SetNetvoxLoRaWA NRejoinTimeRsp	0x83	(1 E	atus Byte) success	Reserved (13 Bytes, Fixed 0x00)				
GetNetvoxLoRaWA NRejoinTimeReq	0x04	Reserved (15 Bytes, Fixed 0x00)						
GetNetvoxLoRaWA NRejoinTimeRsp	0x84	1 st Rejoin Time (2 Bytes, unit:1 min)	2 nd Rejoin Time (2 Bytes, unit: 1 min)	3 rd Rejoin Time (2 Bytes, unit: 1 min)	4 th Rejoin Time (2 Bytes, unit: 1 min)	5 th Rejoin Time (2 Bytes, unit: 1 min)	6 th Rejoin Time (2 Bytes, unit: 1 min)	7 th Rejoin Time (2 Bytes, unit: 1 min)

Note:

- a. Set RejoinCheckThreshold as 0xFFFFFFFF to stop the device from rejoining the network.
- b. The last configuration would be kept when the device is factory reset.
- c. Default setting:

RejoinCheckPeriod = 2 (hr) and RejoinThreshold = 3 (times)

- 1^{st} Rejoin Time = 0x0001 (1 min), 2^{nd} Rejoin Time = 0x0002 (2 mins), 3^{rd} Rejoin Time = 0x0003 (3 mins),
- 4^{th} Rejoin Time = 0x0004 (4 mins), 5^{th} Rejoin Time = 0x003C (60 mins), 6^{th} Rejoin Time = 0x0168 (360 mins),
- 7^{th} Rejoin Time = 0x05A0 (1440 mins)
- d. If device loses connection from network before data are reported, the data will be saved and reported every 30 seconds after the device is reconnected. Data will be reported based on the format of Payload + Unix timestamp. After all data are reported, the report time will be back to the normal setting.

(1) Command Configuration

Set RejoinCheckPeriod = 0x00000E10 (3600s), RejoinThreshold = 0x03 (3 times)

Downlink: 0100000E1003

Response: 810000000000 (Configuration success)

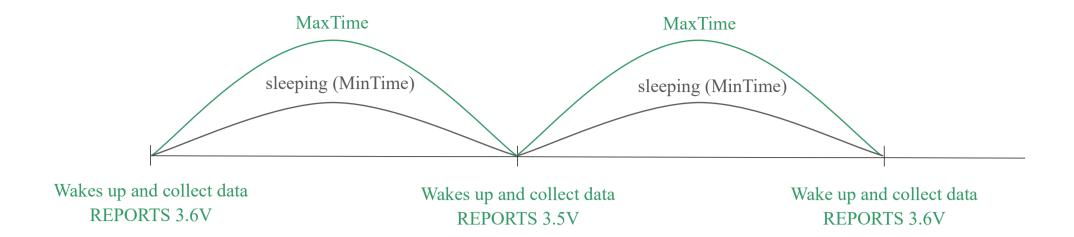
81010000000 (Configuration failure)

(2) Read RejoinCheckPeriod and RejoinThreshold

Downlink: 020000000000 Response: 8200000E1003

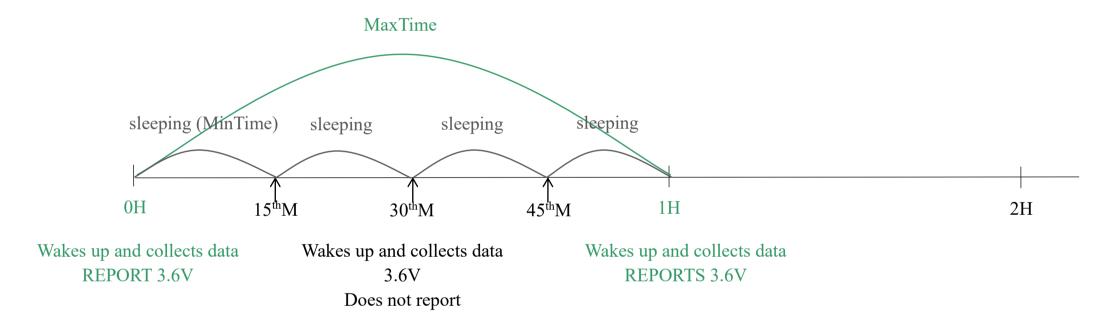
(3) Configure Rejoin Time

```
1^{st} Rejoin Time = 0x0001 (1 min), 2^{nd} Rejoin Time = 0x0002 (2 mins), 3^{rd} Rejoin Time = 0x0003 (3 mins), 4^{th} Rejoin Time = 0x0004 (4 mins), 5^{th} Rejoin Time = 0x0005 (5 mins), 6^{th} Rejoin Time = 0x0006 (6 mins), 7^{th} Rejoin Time = 0x0007 (7 mins)
```

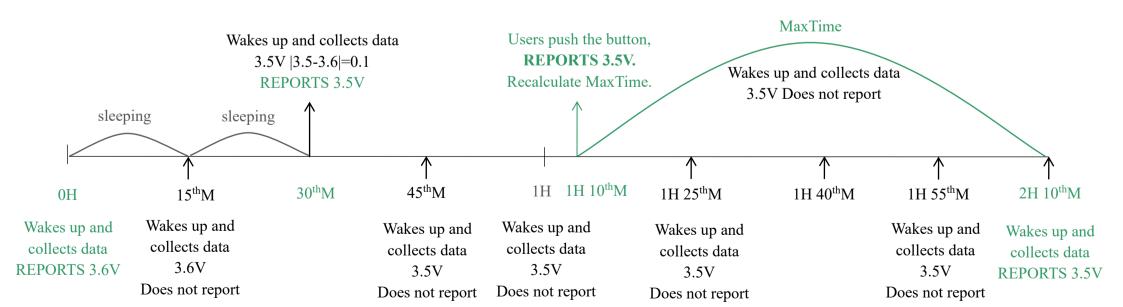

Downlink: 030001000200030004000500060007

83010000000000000000000000000000000 (Configuration failure)

(4) Read Rejoin Time parameter


5.4 Example for MinTime/MaxTime logic

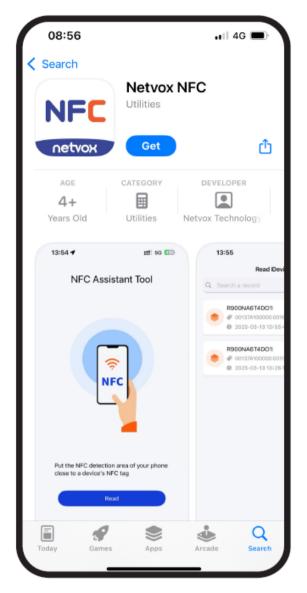
Example#1 based on MinTime = 1 hour, MaxTime = 1 hour, Reportable Change i.e. BatteryVoltageChange = 0.1V



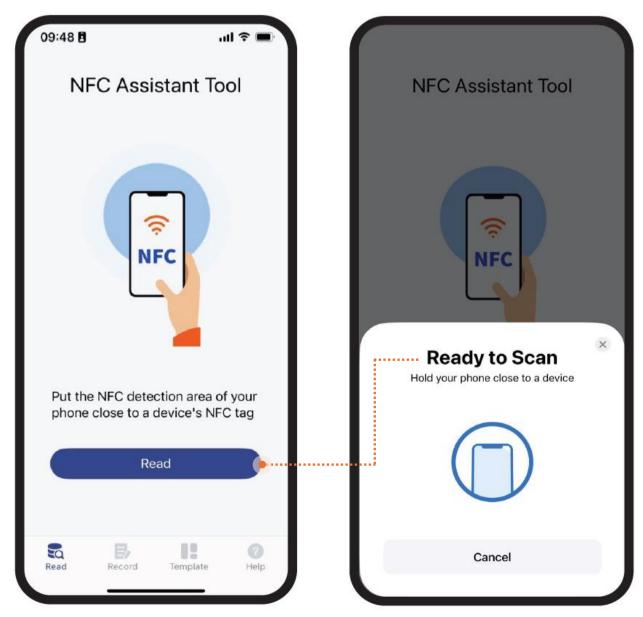
Note: MaxTime = MinTime. Data will only be reported according to MaxTime (MinTime) duration regardless BatteryVoltageChange value.

Example#2 based on MinTime = 15 minutes, MaxTime = 1 hour, Reportable Change i.e. BatteryVoltageChange = 0.1V.

Example#3 based on MinTime = 15 minutes, MaxTime = 1 hour, Reportable Change i.e. BatteryVoltageChange = 0.1V.


Notes:

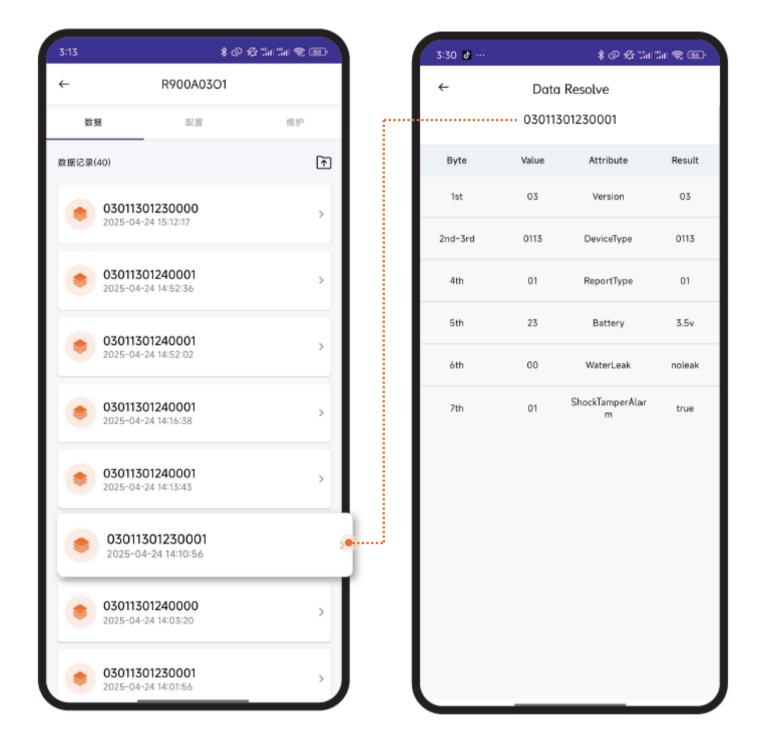
- a. The device only wakes up and performs data sampling according to MinTime Interval. When it is sleeping, it does not collect data.
- b. The data collected is compared with the last data <u>reported</u>. If the data variation is greater than the ReportableChange value, the device reports according to MinTime interval. If the data variation is not greater than the last data reported, the device reports according to MaxTime interval.
- c. We do not recommend setting the MinTime Interval value too low. If the MinTime Interval is too low, the device wakes up frequently and the battery will be drained soon.
- d. Whenever the device sends a report, no matter resulting from data variation, button pushed or MaxTime interval, another cycle of MinTime/MaxTime calculation is started.

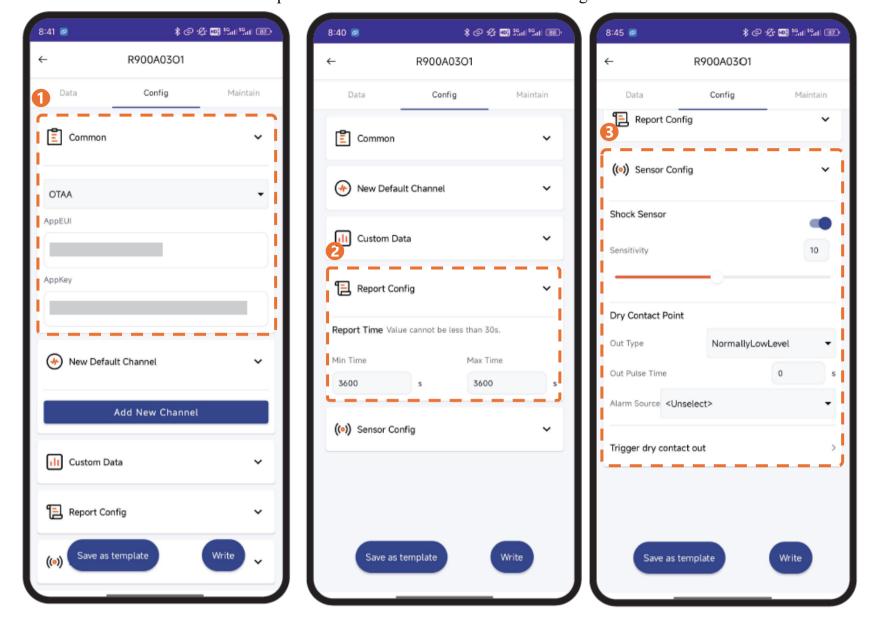

6. Read R900 Data on NFC App

(1) Download Netvox NFC app.

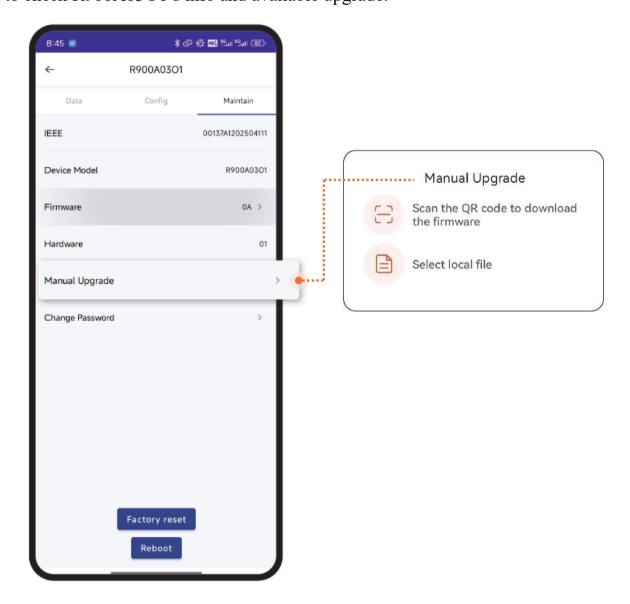
Please make sure your phone supports NFC.

(2) Enable NFC in Settings and find your phone's NFC area. Open the app and click Read.

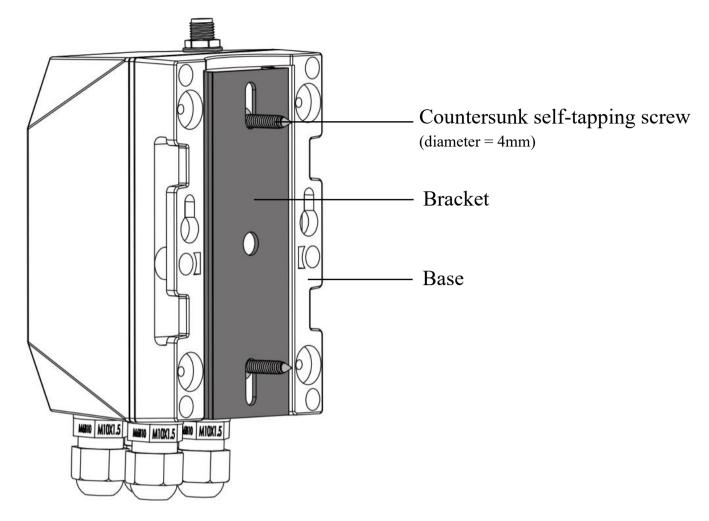


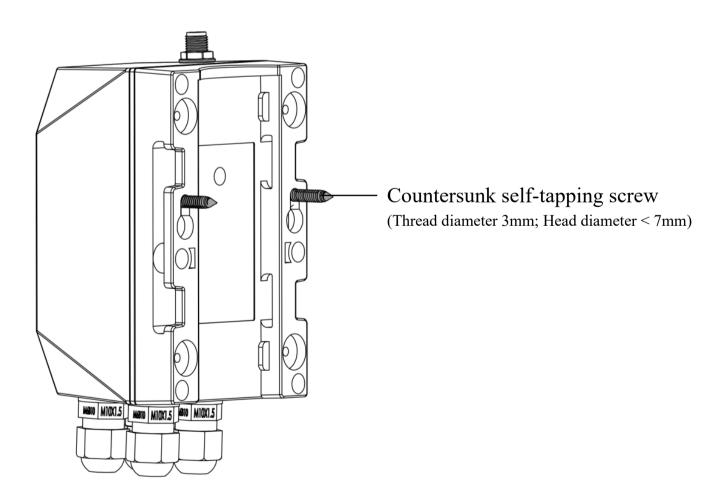


(4) After R900 is successfully read, the latest 10 data will be displayed.


Select a data and go to the Data processing.

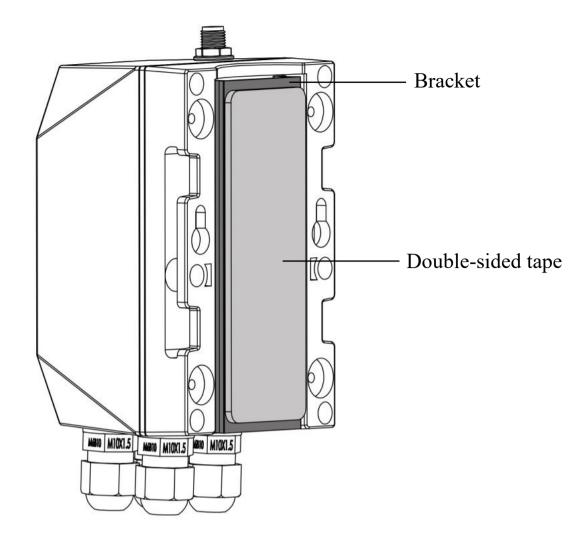
- (5) Click Config to edit R900's settings, including network connection, calibration, report configuration, and sensor parameters.
 - Note: a. To configure device parameters, users need to enter password: 12345678 (default).
 - b. Password can be changed on the app and reset to default when R900 is factory reset.
 - c. Please reboot the device if the parameters of network connection are configured.


(6) Click Maintain to check R900A03O1's info and available upgrade.


7. Installation

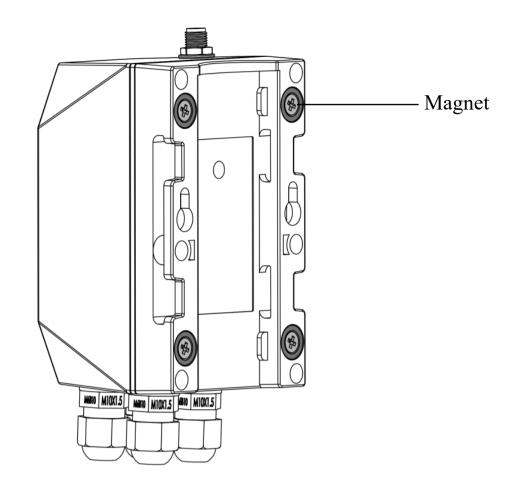
R900

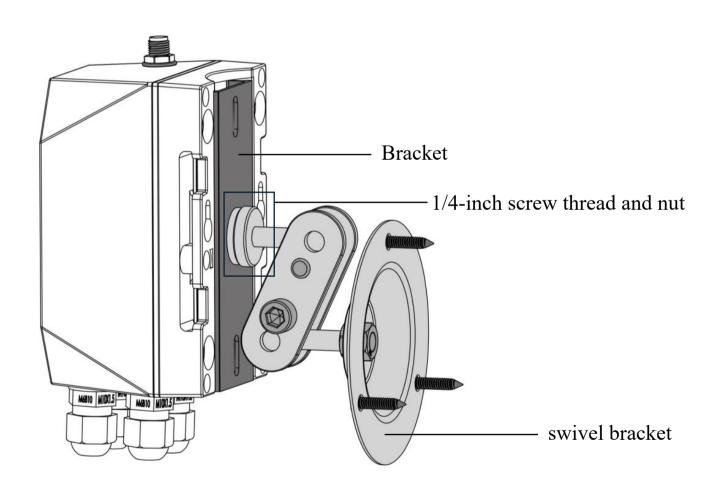
- Standard
- (1) Screws + Bracket



- 1 Mount the bracket on a surface with 2 counter self-tapping screws.
- 2 Hold R900 and slide down to connect the base and bracket.
- (2) Screws

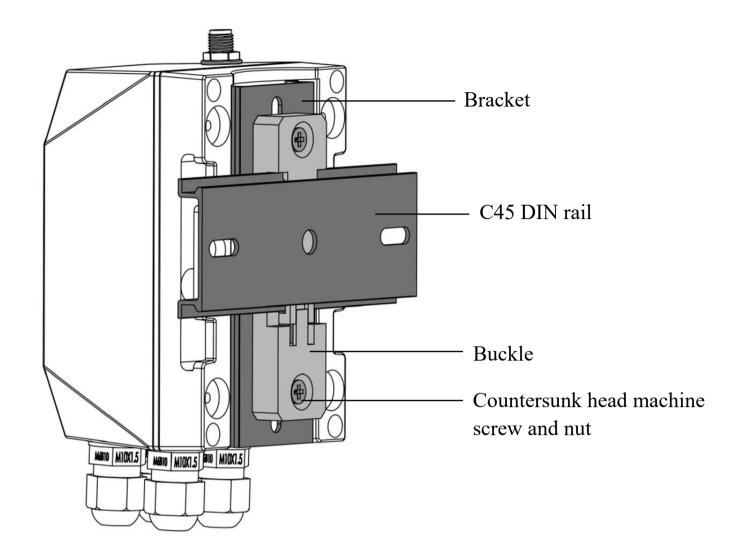
- 1 Mount 2 countersunk self-tapping screws or expansion bolts on the wall.
 - The distance between the two screws should be 48.5mm. The gap between the bottom of the screw head and the wall should be 3mm.
- 2 After the screws are mounted, align the holes of the base with the screws.
- 3 Move R900 down to clamp it.


(3) Double-Sided Tape

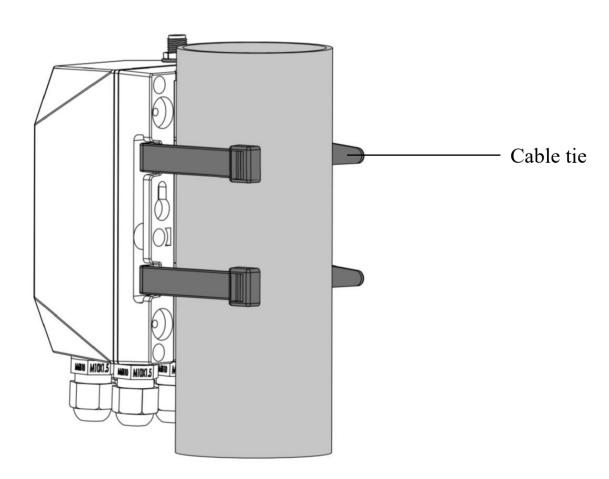

- 1 Stick the double-sided tape on the bracket.
- 2 Peel the liner and fix R900 on the surface.
- 3 Press to ensure R900 is firmly installed.

Note: Please make sure the surface is clean and dry before applying double-sided tape.

- Optional
- (1) Magnet

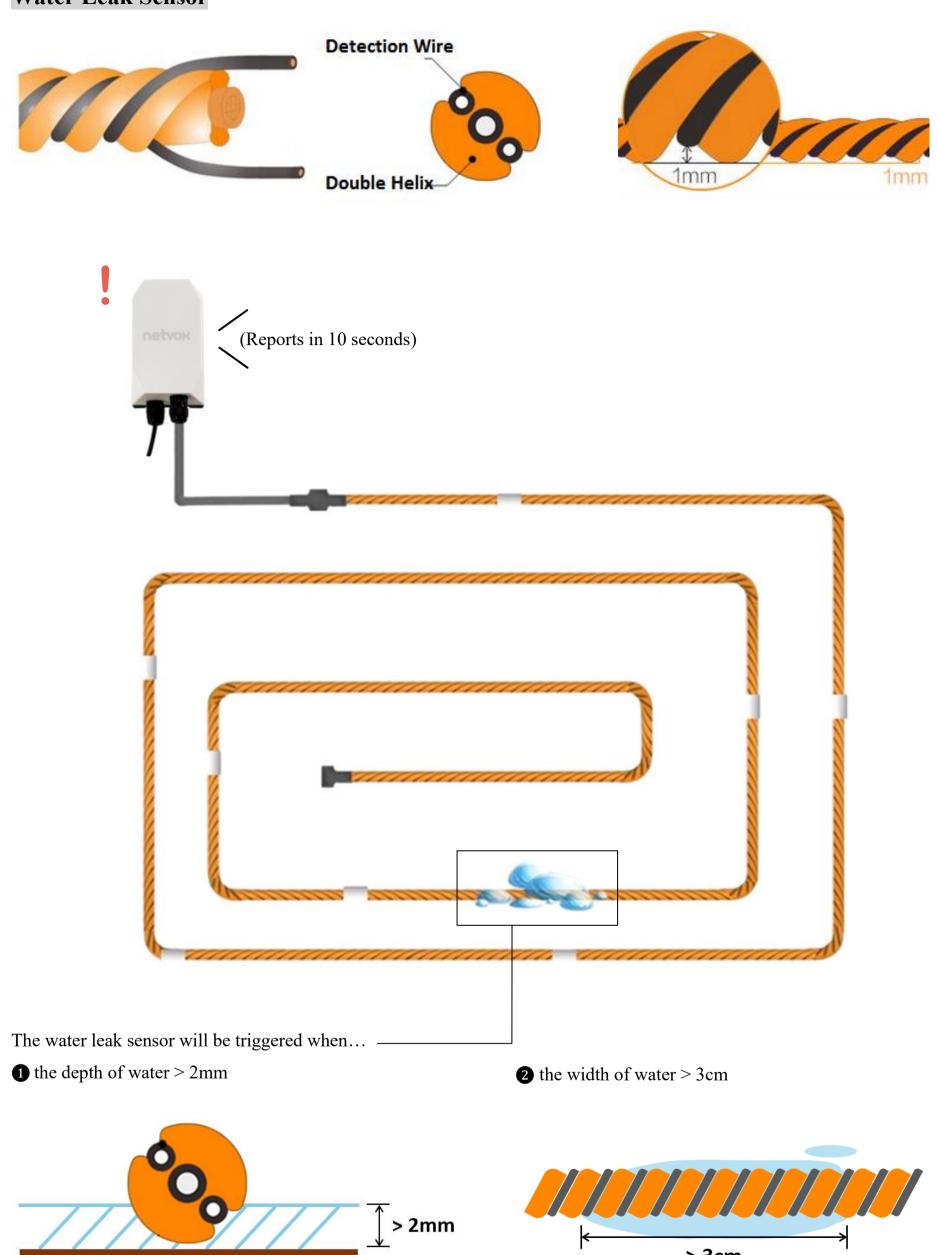


- 1 Fix the R900 on a metal surface.
- (2) Swivel Bracket



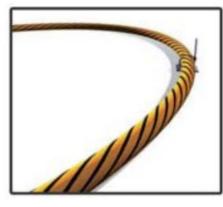
- 1 Insert a 1/4-inch screw thread into the hole of the bracket.
- 2 Tighten the thread with a nut.
- 3 Mount the swivel bracket with self-tapping screws and expansion bolts.
- 4 Hold R900 and slide down to connect the base and bracket.

(3) DIN Rail



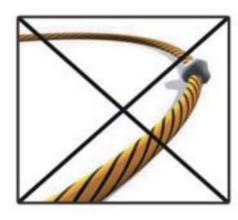
- 1 Mount the rail buckle onto R900's bracket with countersunk head machine screws and nuts.
- 2 Snap the buckle onto the DIN rail.
- 3 Hold R900 and slide down to connect the base and bracket.
- Prepared by customers
- (1) Cable Tie

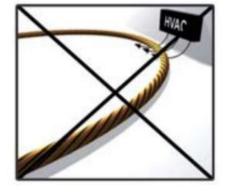
- 1 Insert cable ties through the holes of the base.
- 2 Insert the pointed end through the slot.
- 3 Tighten the cable ties and make sure R900 is fixed firmly around a column.


Water Leak Sensor


Dos and Don'ts for Installation

Fixed by cable clip


Fixed by tape


Fixed along with pipe

Fixed with mental (may cause interference)

Fixed by glue (may damage cable)

Fixed in front of air-conditioner (moisture may cause false alarms)

8. Battery Passivation

Many Netvox devices are powered by 3.6V ER14505 / ER18505 Li-SOCl2 (lithium-thionyl chloride) batteries that offer many advantages including low self-discharge rate and high energy density. However, primary lithium batteries like Li-SOCl2 batteries will form a passivation layer as a reaction between the lithium anode and thionyl chloride if they are in storage for a long time or if the storage temperature is too high. This lithium chloride layer prevents rapid self-discharge caused by continuous reactions between lithium and thionyl chloride, but battery passivation may also lead to voltage delay when the batteries are put into operation, and our devices may not work correctly in this situation.

As a result, please make sure to purchase batteries from reliable vendors, and it is suggested that if the storage period is more than one month from the date of battery production, all the batteries should be activated. If encountering the situation of battery passivation, please activate the battery with 67Ω load resistance for 8 minutes to eliminate hysteresis in batteries.

9. Important Maintenance Instructions

Kindly pay attention to the following to achieve the best maintenance of the product:

- Keep the device dry. Rain, moisture, or any liquid might contain minerals and thus corrode electronic circuits. If the device gets wet, please dry it completely.
- Do not use or store the device in a dusty or dirty environment. It might damage its detachable parts and electronic components.
- Do not store the device under extremely hot conditions. High temperatures can shorten the life of electronic devices, destroy batteries, and deform or melt some plastic parts.
- Do not store the device in places that are too cold. Otherwise, when the temperature rises, moisture that forms inside the device will damage the board.
- Do not throw, knock, or shake the device. Rough handling of equipment can destroy internal circuit boards and delicate structures.
- Do not clean the device with strong chemicals, detergents, or strong detergents.
- Do not apply the device with paint. Smudges might block the device and affect the operation.
- Do not throw the battery into the fire, or the battery will explode. Damaged batteries may also explode.

All of the above applies to your device, battery, and accessories. If any device is not operating properly, please take it to the nearest authorized service facility for repair