Wireless Soil Moisture Sensor

netvox

Wireless Soil Moisture Sensor

R718PB13 User manual

Copyright©Netvox Technology Co., Ltd.

This document contains proprietary technical information which is the property of NETVOX Technology. It shall be maintained

in strict confidence and shall not be disclosed to other parties, in whole or in part, without written permission of NETVOX

Technology. The specifications are subject to change without prior notice.

Table of Content

1. Introduction
2. Appearance
3. Main Characteristics
4. Operation
5. Data Report
5.1 Data report configuration and sending period are as following
5.2 Soil data collection calibration6
5.3 Select soil type7
6. Installation
7. Information about Battery Passivation9
7.1 To determine whether a battery requires activation9
7.2 How to activate the battery9
8. Important Maintenance Instruction10

1. Introduction

The R718PB13 is a Class A type device based on the LoRaWAN protocol.

R718PB13 is connected with EC-5 soil sensor.

As detectors for soil VWC (volumetric water content), the value collected by the sensor are reported to the corresponding gateway.

LoRa Wireless Technology:

LoRa is a wireless communication technology dedicated to long distance and low power consumption. Compared with other communication methods, LoRa spread spectrum modulation method greatly increases to expand the communication distance. Widely used in long-distance, low-data wireless communications. For example, automatic meter reading, building automation equipment, wireless security systems, industrial monitoring. Main features include small size, low power consumption, transmission distance, anti-interference ability and so on.

LoRaWAN:

LoRaWAN uses LoRa technology to define end-to-end standard specifications to ensure interoperability between devices and gateways from different manufacturers.

2. Appearance

3. Main Characteristics

- Using SX1276 wireless communication module
- 2 ER14505 batteries AA size (3.6V / cell) power supply in parallel
- Host protection grade IP65
- VWC (volumetric water content) detection
- Compatible with LoRaWANTM Class A
- Using frequency hopping spread spectrum technology
- Configurable parameters via third-party software platform, reading data and setting alarms via SMS text and email (optional)
- Applicable to third-party platforms: Actility / ThingPark, TTN, MyDevices / Cayenn
- The product has low power consumption and supports longer battery life.

Note *:

The battery life is determined by the frequency and other variables reported by the sensor.

Please refer to http://www.netvox.com.tw/electric/electric_calc.html

On the website, users can find various models of battery life in different configurations

4. Operation

On/Off

Power on	Insert batteries. (users may need a screwdriver to open)
Turn on	Press and hold the function key for 3 seconds till the green indicator flashes once.
Turn off (Restore to factory setting)	Press and hold the function key for 5 seconds till the green indicator flashes for 20 times.
Power off	Remove batteries
	1. At 1 st -5th second after power on, the device will be in engineering test mode.
	2. Remove and insert the battery; the device is at off state by default. Need to be turned on to
Note:	use.
	3. On/off interval is suggested to be about 10 seconds to avoid the interference of capacitor
	inductance and other energy storage components.

Network Joining

	Turn on the device to search the network.
Never joined the network	The green indicator stays on for 5 seconds: success
	The green indicator remains off: fail
Had joined the network	Turn on the device to search the previous network.
(not at factory setting)	The green indicator stays on for 5 seconds: success
(not at factory setting.)	The green indicator remains off: fail
Fail to join the network	Suggest to check the device verification information on the gateway or consult your platform
(when the device is on)	server provider.

Function Key

	Restore to factory setting / Turn off
Press and hold for 5 seconds	The green indicator flashes for 20 times: success
	The green indicator remains off: fail
Drage on co	The device is in the network: The green indicator flashes once and sends a data report
	The device is not in the network: the green indicator remains off

Sleeping Mode

The device is on and in the network	Sleeping period: Min Interval.
	When the report change exceeds setting value or the state changes: send a data report according
	to Min Interval.

Low Voltage Warning

Low Voltage	3.2V		
-------------	------	--	--

5. Data Report

The device will immediately send a version packet report along with an uplink packet including VWC value.

The device sends data in the default configuration before any configuration is done.

Default setting:

MaxTime: Max Interval = 15 min (default)

MinTime: None

Soil Type: 0x00 (Mineral Soil)

Note:

- (1) The device report interval will be programmed based on the default firmware which may vary.
- (2) Mintime and ReportChange are not supported by R718PB13 (Invalid configuration)
- (3)Report cycle will be based on Report Max Time period when sending data packet.
- (4) Data packet: VWC value
- (5) It would take about <u>3 seconds</u> for the soil sensor to sample and process the collected value if you were to manually trigger the

device by pressing the button, please be patient.

The device reported data parsing please refer to Netvox LoRaWAN Application Command document and Netvox Lora

Command Resolver http://loraresolver.netvoxcloud.com:8888/page/index

5.1 Data report configuration and sending period are as following

Description	Device	CmdID	Device Type	NetvoxPayLoadData				
Config		001		MinTime	Max	Time	Reserved	
ReportReq		UXUI		(2bytes Unit:s)	(2bytes	s Unit:s)	(5Bytes,Fixed 0x00)	
Config		0	0x81	Status			Reserved	
ReportRsp	D710DD12	0X81		(0x00_success)		(88	Bytes, Fixed 0x00)	
ReadConfig	K/10FD15	002	0x38	Reserved				
ReportReq		0x02	0x02			(9Bytes,F	ixed 0x00)	
ReadConfig				MinTime	Max	Time	Reserved	
ReportRsp		0x82		(2bytes Unit:s)	(2bytes	s Unit:s)	(5Bytes,Fixed 0x00)	

5

(1) Configure device parameters MaxTime = 1min

Downlink: 0158000003C000000000

The device returns:

815800000000000000000000000 (Configuration succeeded)

0)

(2) Read device configuration parameters

The device returns:

8258000003C000000000 (device current configuration parameters)

5.2 Soil data collection calibration

The R718PB13 calibrates the acquired soil data by setting soil calibration values.

When the soil calibration value in the issued command is 0, the collected data is the data actually collected by the soil sensor.

If the soil calibration value in the command is not 0, the collected data is the original collected data plus the calibration value.

Soil acquisition data calibration configuration:

Description	Device	Cmd	Device	NetvoxI	PayLoadData
		ID	Туре	Туре	
SoilCalibrateRea	oilCalibrataDag		0x0C 0x58 0x8C	VWCDelt	Reserved
SonCanorateReq	D718DB13	UXUC		(1byte SignedValue,Unit:1%)	(8Bytes,Fixed 0x00)
SoilCalibrateRsp	K/101 B13	0x8C		Status	Reserved
				(0x00_success)	(8Bytes,Fixed 0x00)

(1) Configure the device VWC calibration value to be 10%.

Downlink: 0C580A00000000000000000

Device returns:

8C580000000000000000000000 (configuration is successful)

8C5801000000000000000 (configuration is failed)

(2) Read device parameters

Downlink: 0C580000000000000000000

Device returns:

5.3 Select soil type

R718PB13 selects soil types by instruction.

Soil types include mineral soil, potting soil, and rock wool. See the documentation for details.

Description	Device	CmdI D	DeviceType	NetvoxPayLoadData	
SetSoilTypeReq		0x0A		Soil Type (1byte) 0x00_Mineral Soil 0x01_PottingSoil 0x02_Rockwool	Reserved (8Bytes,Fixed 0x00)
SetSoilTypeRsp	- R718PB13	0x8A	0.50	Status (0x00_success)	Reserved (8Bytes,Fixed 0x00)
GetSoilTypeReq		0x0B 0x8B	B	Rese (9Bytes,Fi	erved ixed 0x00)
GetSoilTypeRsp				Soil Type (1byte) 0x00_Mineral Soil 0x01_PottingSoil 0x02_Rockwool	Reserved (8Bytes,Fixed 0x00)

(1) Configure the device soil type to Potting Soil

Downlink: 0A58<u>01</u>00000000000000000

Device returns:

(2) Read device parameters

Device returns:

8B58010000000000000000000 (device current configuration parameter)

6. Installation

Method1. Horizontal Installation

- 1. Excavate a hole or trench a few centimeters deeper than the depth at which the sensor is to be installed.
- 2. At the installation depth, shave off some soil from the vertical soil face exposing undisturbed soil.
- 3. Insert the sensor into the undisturbed soil face until the entire sensor is inserted. The tip of each prong has been sharpened to make it easier to push the sensor into the soil.

Be careful with the sharp tips!

4. Backfill the trench taking care to pack the soil back to natural bulk density around the sensor body of the soil sensor.

Method2. Vertical Installation

- 1. Auger a 3-in hole to the depth at which the sensor is to be installed.
- 2. Insert the sensor into the undisturbed soil at the bottom of the auger hole using a hand or any other implement that will guide the sensor into the soil at the bottom of the hole. Many people have used a simple piece of PVC pipe with a notch cut in the end for the sensor to sit in, with the sensor cable routed inside the pipe.
- 3. After inserting the sensor, remove the installation device and backfill the hole taking care to pack the soil back to natural bulk density while not damaging the black overmolding of the sensor and the sensor cable in the process.

7. Information about Battery Passivation

Many of Netvox devices are powered by 3.6V ER14505 Li-SOCl2 (lithium-thionyl chloride) batteries that offer many advantages including low self-discharge rate and high energy density.

However, primary lithium batteries like Li-SOC12 batteries will form a passivation layer as a reaction between the lithium anode and thionyl chloride if they are in storage for a long time or if the storage temperature is too high. This lithium chloride layer prevents rapid self-discharge caused by continuous reaction between lithium and thionyl chloride, but battery passivation may also lead to voltage delay when the batteries are put into operation, and our devices may not work correctly in this situation.

As a result, please make sure to source batteries from reliable vendors, and <u>it is suggested that if the storage period is more</u> <u>than one month from the date of battery production, all the batteries should be activated.</u>

If encountering the situation of battery passivation, users can activate the battery to eliminate the battery hysteresis.

ER14505 Battery Passivation:

7.1 To determine whether a battery requires activation

Connect a new ER14505 battery to a resistor in parallel, and check the voltage of the circuit.

If the voltage is below 3.3V, it means the battery requires activation.

7.2 How to activate the battery

- a. Connect a battery to a resistor in parallel
- b. Keep the connection for 5~8 minutes
- c. The voltage of the circuit should be \geq 3.3, indicating successful activation.

Brand	Load Resistance	Activation Time	Activation Current

NHTONE	165 Ω	5 minutes	20mA
RAMWAY	67 Ω	8 minutes	50mA
EVE	67 Ω	8 minutes	50mA
SAFT	67 Ω	8 minutes	50mA

Note:

If you buy batteries from other than the above four manufacturers, then the battery activation time, activation current, and

required load resistance shall be mainly subject to the announcement of each manufacturer.

8. Important Maintenance Instruction

Your device is a product of superior design and craftsmanship and should be used with care. The following suggestions will help you use the warranty service effectively.

- Keep the equipment dry. Rain, moisture, and various liquids or moisture may contain minerals that can corrode electronic circuits. In case the device is wet, please dry it completely.
- Do not use or store in dusty or dirty areas. This can damage its detachable parts and electronic components.
- Do not store in excessive heat. High temperatures can shorten the life of electronic devices, destroy batteries, and deform or melt some plastic parts.
- Do not store in a cold place. Otherwise, when the temperature rises to normal temperature, moisture will form inside, which will destroy the board.
- Do not throw, knock or shake the device. Rough handling of equipment can destroy internal circuit boards and delicate structures.
- Do not wash with strong chemicals, detergents or strong detergents.
- Do not apply with paint. Smudges can block debris in detachable parts and affect normal operation.
- Do not throw the battery into a fire to prevent the battery from exploding. Damaged batteries may also explode.

All of the above suggestions apply equally to your device, battery and accessories.

If any device is not working properly, please take it to the nearest authorized service facility for repair.